1
0
mirror of https://git.zx2c4.com/wireguard-go synced 2024-11-15 01:05:15 +01:00
wireguard-go/device/channels.go
Jordan Whited 4201e08f1d device: distribute crypto work as slice of elements
After reducing UDP stack traversal overhead via GSO and GRO,
runtime.chanrecv() began to account for a high percentage (20% in one
environment) of perf samples during a throughput benchmark. The
individual packet channel ops with the crypto goroutines was the primary
contributor to this overhead.

Updating these channels to pass vectors, which the device package
already handles at its ends, reduced this overhead substantially, and
improved throughput.

The iperf3 results below demonstrate the effect of this commit between
two Linux computers with i5-12400 CPUs. There is roughly ~13us of round
trip latency between them.

The first result is with UDP GSO and GRO, and with single element
channels.

Starting Test: protocol: TCP, 1 streams, 131072 byte blocks
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-10.00  sec  12.3 GBytes  10.6 Gbits/sec  232   3.15 MBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
Test Complete. Summary Results:
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec  12.3 GBytes  10.6 Gbits/sec  232   sender
[  5]   0.00-10.04  sec  12.3 GBytes  10.6 Gbits/sec        receiver

The second result is with channels updated to pass a slice of
elements.

Starting Test: protocol: TCP, 1 streams, 131072 byte blocks
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-10.00  sec  13.2 GBytes  11.3 Gbits/sec  182   3.15 MBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
Test Complete. Summary Results:
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec  13.2 GBytes  11.3 Gbits/sec  182   sender
[  5]   0.00-10.04  sec  13.2 GBytes  11.3 Gbits/sec        receiver

Reviewed-by: Adrian Dewhurst <adrian@tailscale.com>
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2023-10-10 15:07:36 +02:00

138 lines
3.5 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package device
import (
"runtime"
"sync"
)
// An outboundQueue is a channel of QueueOutboundElements awaiting encryption.
// An outboundQueue is ref-counted using its wg field.
// An outboundQueue created with newOutboundQueue has one reference.
// Every additional writer must call wg.Add(1).
// Every completed writer must call wg.Done().
// When no further writers will be added,
// call wg.Done to remove the initial reference.
// When the refcount hits 0, the queue's channel is closed.
type outboundQueue struct {
c chan *[]*QueueOutboundElement
wg sync.WaitGroup
}
func newOutboundQueue() *outboundQueue {
q := &outboundQueue{
c: make(chan *[]*QueueOutboundElement, QueueOutboundSize),
}
q.wg.Add(1)
go func() {
q.wg.Wait()
close(q.c)
}()
return q
}
// A inboundQueue is similar to an outboundQueue; see those docs.
type inboundQueue struct {
c chan *[]*QueueInboundElement
wg sync.WaitGroup
}
func newInboundQueue() *inboundQueue {
q := &inboundQueue{
c: make(chan *[]*QueueInboundElement, QueueInboundSize),
}
q.wg.Add(1)
go func() {
q.wg.Wait()
close(q.c)
}()
return q
}
// A handshakeQueue is similar to an outboundQueue; see those docs.
type handshakeQueue struct {
c chan QueueHandshakeElement
wg sync.WaitGroup
}
func newHandshakeQueue() *handshakeQueue {
q := &handshakeQueue{
c: make(chan QueueHandshakeElement, QueueHandshakeSize),
}
q.wg.Add(1)
go func() {
q.wg.Wait()
close(q.c)
}()
return q
}
type autodrainingInboundQueue struct {
c chan *[]*QueueInboundElement
}
// newAutodrainingInboundQueue returns a channel that will be drained when it gets GC'd.
// It is useful in cases in which is it hard to manage the lifetime of the channel.
// The returned channel must not be closed. Senders should signal shutdown using
// some other means, such as sending a sentinel nil values.
func newAutodrainingInboundQueue(device *Device) *autodrainingInboundQueue {
q := &autodrainingInboundQueue{
c: make(chan *[]*QueueInboundElement, QueueInboundSize),
}
runtime.SetFinalizer(q, device.flushInboundQueue)
return q
}
func (device *Device) flushInboundQueue(q *autodrainingInboundQueue) {
for {
select {
case elems := <-q.c:
for _, elem := range *elems {
elem.Lock()
device.PutMessageBuffer(elem.buffer)
device.PutInboundElement(elem)
}
device.PutInboundElementsSlice(elems)
default:
return
}
}
}
type autodrainingOutboundQueue struct {
c chan *[]*QueueOutboundElement
}
// newAutodrainingOutboundQueue returns a channel that will be drained when it gets GC'd.
// It is useful in cases in which is it hard to manage the lifetime of the channel.
// The returned channel must not be closed. Senders should signal shutdown using
// some other means, such as sending a sentinel nil values.
// All sends to the channel must be best-effort, because there may be no receivers.
func newAutodrainingOutboundQueue(device *Device) *autodrainingOutboundQueue {
q := &autodrainingOutboundQueue{
c: make(chan *[]*QueueOutboundElement, QueueOutboundSize),
}
runtime.SetFinalizer(q, device.flushOutboundQueue)
return q
}
func (device *Device) flushOutboundQueue(q *autodrainingOutboundQueue) {
for {
select {
case elems := <-q.c:
for _, elem := range *elems {
elem.Lock()
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
}
device.PutOutboundElementsSlice(elems)
default:
return
}
}
}