1
0
mirror of https://git.zx2c4.com/wireguard-go synced 2024-11-15 01:05:15 +01:00
wireguard-go/tun/offload_linux.go
Jordan Whited d0bc03c707 tun: implement UDP GSO/GRO for Linux
Implement UDP GSO and GRO for the Linux tun.Device, which is made
possible by virtio extensions in the kernel's TUN driver starting in
v6.2.

secnetperf, a QUIC benchmark utility from microsoft/msquic@8e1eb1a, is
used to demonstrate the effect of this commit between two Linux
computers with i5-12400 CPUs. There is roughly ~13us of round trip
latency between them. secnetperf was invoked with the following command
line options:
-stats:1 -exec:maxtput -test:tput -download:10000 -timed:1 -encrypt:0

The first result is from commit 2e0774f without UDP GSO/GRO on the TUN.

[conn][0x55739a144980] STATS: EcnCapable=0 RTT=3973 us
SendTotalPackets=55859 SendSuspectedLostPackets=61
SendSpuriousLostPackets=59 SendCongestionCount=27
SendEcnCongestionCount=0 RecvTotalPackets=2779122
RecvReorderedPackets=0 RecvDroppedPackets=0
RecvDuplicatePackets=0 RecvDecryptionFailures=0
Result: 3654977571 bytes @ 2922821 kbps (10003.972 ms).

The second result is with UDP GSO/GRO on the TUN.

[conn][0x56493dfd09a0] STATS: EcnCapable=0 RTT=1216 us
SendTotalPackets=165033 SendSuspectedLostPackets=64
SendSpuriousLostPackets=61 SendCongestionCount=53
SendEcnCongestionCount=0 RecvTotalPackets=11845268
RecvReorderedPackets=25267 RecvDroppedPackets=0
RecvDuplicatePackets=0 RecvDecryptionFailures=0
Result: 15574671184 bytes @ 12458214 kbps (10001.222 ms).

Signed-off-by: Jordan Whited <jordan@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2023-12-11 16:27:22 +01:00

994 lines
33 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package tun
import (
"bytes"
"encoding/binary"
"errors"
"io"
"unsafe"
"golang.org/x/sys/unix"
"golang.zx2c4.com/wireguard/conn"
)
const tcpFlagsOffset = 13
const (
tcpFlagFIN uint8 = 0x01
tcpFlagPSH uint8 = 0x08
tcpFlagACK uint8 = 0x10
)
// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
// kernel symbol is virtio_net_hdr.
type virtioNetHdr struct {
flags uint8
gsoType uint8
hdrLen uint16
gsoSize uint16
csumStart uint16
csumOffset uint16
}
func (v *virtioNetHdr) decode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
return nil
}
func (v *virtioNetHdr) encode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
return nil
}
const (
// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
)
// tcpFlowKey represents the key for a TCP flow.
type tcpFlowKey struct {
srcAddr, dstAddr [16]byte
srcPort, dstPort uint16
rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows.
isV6 bool
}
// tcpGROTable holds flow and coalescing information for the purposes of TCP GRO.
type tcpGROTable struct {
itemsByFlow map[tcpFlowKey][]tcpGROItem
itemsPool [][]tcpGROItem
}
func newTCPGROTable() *tcpGROTable {
t := &tcpGROTable{
itemsByFlow: make(map[tcpFlowKey][]tcpGROItem, conn.IdealBatchSize),
itemsPool: make([][]tcpGROItem, conn.IdealBatchSize),
}
for i := range t.itemsPool {
t.itemsPool[i] = make([]tcpGROItem, 0, conn.IdealBatchSize)
}
return t
}
func newTCPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset int) tcpFlowKey {
key := tcpFlowKey{}
addrSize := dstAddrOffset - srcAddrOffset
copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset])
copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize])
key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
key.isV6 = addrSize == 16
return key
}
// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
items, ok := t.itemsByFlow[key]
if ok {
return items, ok
}
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
return nil, false
}
// insert an item in the table for the provided packet and packet metadata.
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
item := tcpGROItem{
key: key,
bufsIndex: uint16(bufsIndex),
gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])),
iphLen: uint8(tcphOffset),
tcphLen: uint8(tcphLen),
sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
}
items, ok := t.itemsByFlow[key]
if !ok {
items = t.newItems()
}
items = append(items, item)
t.itemsByFlow[key] = items
}
func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
items, _ := t.itemsByFlow[item.key]
items[i] = item
}
func (t *tcpGROTable) deleteAt(key tcpFlowKey, i int) {
items, _ := t.itemsByFlow[key]
items = append(items[:i], items[i+1:]...)
t.itemsByFlow[key] = items
}
// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type tcpGROItem struct {
key tcpFlowKey
sentSeq uint32 // the sequence number
bufsIndex uint16 // the index into the original bufs slice
numMerged uint16 // the number of packets merged into this item
gsoSize uint16 // payload size
iphLen uint8 // ip header len
tcphLen uint8 // tcp header len
pshSet bool // psh flag is set
}
func (t *tcpGROTable) newItems() []tcpGROItem {
var items []tcpGROItem
items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
return items
}
func (t *tcpGROTable) reset() {
for k, items := range t.itemsByFlow {
items = items[:0]
t.itemsPool = append(t.itemsPool, items)
delete(t.itemsByFlow, k)
}
}
// udpFlowKey represents the key for a UDP flow.
type udpFlowKey struct {
srcAddr, dstAddr [16]byte
srcPort, dstPort uint16
isV6 bool
}
// udpGROTable holds flow and coalescing information for the purposes of UDP GRO.
type udpGROTable struct {
itemsByFlow map[udpFlowKey][]udpGROItem
itemsPool [][]udpGROItem
}
func newUDPGROTable() *udpGROTable {
u := &udpGROTable{
itemsByFlow: make(map[udpFlowKey][]udpGROItem, conn.IdealBatchSize),
itemsPool: make([][]udpGROItem, conn.IdealBatchSize),
}
for i := range u.itemsPool {
u.itemsPool[i] = make([]udpGROItem, 0, conn.IdealBatchSize)
}
return u
}
func newUDPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset int) udpFlowKey {
key := udpFlowKey{}
addrSize := dstAddrOffset - srcAddrOffset
copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset])
copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize])
key.srcPort = binary.BigEndian.Uint16(pkt[udphOffset:])
key.dstPort = binary.BigEndian.Uint16(pkt[udphOffset+2:])
key.isV6 = addrSize == 16
return key
}
// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (u *udpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int) ([]udpGROItem, bool) {
key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset)
items, ok := u.itemsByFlow[key]
if ok {
return items, ok
}
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
u.insert(pkt, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex, false)
return nil, false
}
// insert an item in the table for the provided packet and packet metadata.
func (u *udpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int, cSumKnownInvalid bool) {
key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset)
item := udpGROItem{
key: key,
bufsIndex: uint16(bufsIndex),
gsoSize: uint16(len(pkt[udphOffset+udphLen:])),
iphLen: uint8(udphOffset),
cSumKnownInvalid: cSumKnownInvalid,
}
items, ok := u.itemsByFlow[key]
if !ok {
items = u.newItems()
}
items = append(items, item)
u.itemsByFlow[key] = items
}
func (u *udpGROTable) updateAt(item udpGROItem, i int) {
items, _ := u.itemsByFlow[item.key]
items[i] = item
}
// udpGROItem represents bookkeeping data for a UDP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type udpGROItem struct {
key udpFlowKey
bufsIndex uint16 // the index into the original bufs slice
numMerged uint16 // the number of packets merged into this item
gsoSize uint16 // payload size
iphLen uint8 // ip header len
cSumKnownInvalid bool // UDP header checksum validity; a false value DOES NOT imply valid, just unknown.
}
func (u *udpGROTable) newItems() []udpGROItem {
var items []udpGROItem
items, u.itemsPool = u.itemsPool[len(u.itemsPool)-1], u.itemsPool[:len(u.itemsPool)-1]
return items
}
func (u *udpGROTable) reset() {
for k, items := range u.itemsByFlow {
items = items[:0]
u.itemsPool = append(u.itemsPool, items)
delete(u.itemsByFlow, k)
}
}
// canCoalesce represents the outcome of checking if two TCP packets are
// candidates for coalescing.
type canCoalesce int
const (
coalescePrepend canCoalesce = -1
coalesceUnavailable canCoalesce = 0
coalesceAppend canCoalesce = 1
)
// ipHeadersCanCoalesce returns true if the IP headers found in pktA and pktB
// meet all requirements to be merged as part of a GRO operation, otherwise it
// returns false.
func ipHeadersCanCoalesce(pktA, pktB []byte) bool {
if len(pktA) < 9 || len(pktB) < 9 {
return false
}
if pktA[0]>>4 == 6 {
if pktA[0] != pktB[0] || pktA[1]>>4 != pktB[1]>>4 {
// cannot coalesce with unequal Traffic class values
return false
}
if pktA[7] != pktB[7] {
// cannot coalesce with unequal Hop limit values
return false
}
} else {
if pktA[1] != pktB[1] {
// cannot coalesce with unequal ToS values
return false
}
if pktA[6]>>5 != pktB[6]>>5 {
// cannot coalesce with unequal DF or reserved bits. MF is checked
// further up the stack.
return false
}
if pktA[8] != pktB[8] {
// cannot coalesce with unequal TTL values
return false
}
}
return true
}
// udpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. iphLen and gsoSize describe pkt. bufs is the vector of
// packets involved in the current GRO evaluation. bufsOffset is the offset at
// which packet data begins within bufs.
func udpPacketsCanCoalesce(pkt []byte, iphLen uint8, gsoSize uint16, item udpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
pktTarget := bufs[item.bufsIndex][bufsOffset:]
if !ipHeadersCanCoalesce(pkt, pktTarget) {
return coalesceUnavailable
}
if len(pktTarget[iphLen+udphLen:])%int(item.gsoSize) != 0 {
// A smaller than gsoSize packet has been appended previously.
// Nothing can come after a smaller packet on the end.
return coalesceUnavailable
}
if gsoSize > item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
return coalesceAppend
}
// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. This function makes considerations that match the kernel's
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
pktTarget := bufs[item.bufsIndex][bufsOffset:]
if tcphLen != item.tcphLen {
// cannot coalesce with unequal tcp options len
return coalesceUnavailable
}
if tcphLen > 20 {
if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
// cannot coalesce with unequal tcp options
return coalesceUnavailable
}
}
if !ipHeadersCanCoalesce(pkt, pktTarget) {
return coalesceUnavailable
}
// seq adjacency
lhsLen := item.gsoSize
lhsLen += item.numMerged * item.gsoSize
if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
if item.pshSet {
// We cannot append to a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
// A smaller than gsoSize packet has been appended previously.
// Nothing can come after a smaller packet on the end.
return coalesceUnavailable
}
if gsoSize > item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
return coalesceAppend
} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
if pshSet {
// We cannot prepend with a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if gsoSize < item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
if gsoSize > item.gsoSize && item.numMerged > 0 {
// There's at least one previous merge, and we're larger than all
// previous. This would put multiple smaller packets on the end.
return coalesceUnavailable
}
return coalescePrepend
}
return coalesceUnavailable
}
func checksumValid(pkt []byte, iphLen, proto uint8, isV6 bool) bool {
srcAddrAt := ipv4SrcAddrOffset
addrSize := 4
if isV6 {
srcAddrAt = ipv6SrcAddrOffset
addrSize = 16
}
lenForPseudo := uint16(len(pkt) - int(iphLen))
cSum := pseudoHeaderChecksumNoFold(proto, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], lenForPseudo)
return ^checksum(pkt[iphLen:], cSum) == 0
}
// coalesceResult represents the result of attempting to coalesce two TCP
// packets.
type coalesceResult int
const (
coalesceInsufficientCap coalesceResult = iota
coalescePSHEnding
coalesceItemInvalidCSum
coalescePktInvalidCSum
coalesceSuccess
)
// coalesceUDPPackets attempts to coalesce pkt with the packet described by
// item, and returns the outcome.
func coalesceUDPPackets(pkt []byte, item *udpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
pktHead := bufs[item.bufsIndex][bufsOffset:] // the packet that will end up at the front
headersLen := item.iphLen + udphLen
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
if cap(pktHead)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if item.numMerged == 0 {
if item.cSumKnownInvalid || !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_UDP, isV6) {
return coalesceItemInvalidCSum
}
}
if !checksumValid(pkt, item.iphLen, unix.IPPROTO_UDP, isV6) {
return coalescePktInvalidCSum
}
extendBy := len(pkt) - int(headersLen)
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
item.numMerged++
return coalesceSuccess
}
// coalesceTCPPackets attempts to coalesce pkt with the packet described by
// item, and returns the outcome. This function may swap bufs elements in the
// event of a prepend as item's bufs index is already being tracked for writing
// to a Device.
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
var pktHead []byte // the packet that will end up at the front
headersLen := item.iphLen + item.tcphLen
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
// Copy data
if mode == coalescePrepend {
pktHead = pkt
if cap(pkt)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if pshSet {
return coalescePSHEnding
}
if item.numMerged == 0 {
if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) {
return coalesceItemInvalidCSum
}
}
if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) {
return coalescePktInvalidCSum
}
item.sentSeq = seq
extendBy := coalescedLen - len(pktHead)
bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
// Flip the slice headers in bufs as part of prepend. The index of item
// is already being tracked for writing.
bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
} else {
pktHead = bufs[item.bufsIndex][bufsOffset:]
if cap(pktHead)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if item.numMerged == 0 {
if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) {
return coalesceItemInvalidCSum
}
}
if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) {
return coalescePktInvalidCSum
}
if pshSet {
// We are appending a segment with PSH set.
item.pshSet = pshSet
pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
}
extendBy := len(pkt) - int(headersLen)
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
}
if gsoSize > item.gsoSize {
item.gsoSize = gsoSize
}
item.numMerged++
return coalesceSuccess
}
const (
ipv4FlagMoreFragments uint8 = 0x20
)
const (
ipv4SrcAddrOffset = 12
ipv6SrcAddrOffset = 8
maxUint16 = 1<<16 - 1
)
type groResult int
const (
groResultNoop groResult = iota
groResultTableInsert
groResultCoalesced
)
// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It returns a groResultNoop when no
// action was taken, groResultTableInsert when the evaluated packet was
// inserted into table, and groResultCoalesced when the evaluated packet was
// coalesced with another packet in table.
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) groResult {
pkt := bufs[pktI][offset:]
if len(pkt) > maxUint16 {
// A valid IPv4 or IPv6 packet will never exceed this.
return groResultNoop
}
iphLen := int((pkt[0] & 0x0F) * 4)
if isV6 {
iphLen = 40
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
if ipv6HPayloadLen != len(pkt)-iphLen {
return groResultNoop
}
} else {
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
if totalLen != len(pkt) {
return groResultNoop
}
}
if len(pkt) < iphLen {
return groResultNoop
}
tcphLen := int((pkt[iphLen+12] >> 4) * 4)
if tcphLen < 20 || tcphLen > 60 {
return groResultNoop
}
if len(pkt) < iphLen+tcphLen {
return groResultNoop
}
if !isV6 {
if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
// no GRO support for fragmented segments for now
return groResultNoop
}
}
tcpFlags := pkt[iphLen+tcpFlagsOffset]
var pshSet bool
// not a candidate if any non-ACK flags (except PSH+ACK) are set
if tcpFlags != tcpFlagACK {
if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
return groResultNoop
}
pshSet = true
}
gsoSize := uint16(len(pkt) - tcphLen - iphLen)
// not a candidate if payload len is 0
if gsoSize < 1 {
return groResultNoop
}
seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
srcAddrOffset := ipv4SrcAddrOffset
addrLen := 4
if isV6 {
srcAddrOffset = ipv6SrcAddrOffset
addrLen = 16
}
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
if !existing {
return groResultTableInsert
}
for i := len(items) - 1; i >= 0; i-- {
// In the best case of packets arriving in order iterating in reverse is
// more efficient if there are multiple items for a given flow. This
// also enables a natural table.deleteAt() in the
// coalesceItemInvalidCSum case without the need for index tracking.
// This algorithm makes a best effort to coalesce in the event of
// unordered packets, where pkt may land anywhere in items from a
// sequence number perspective, however once an item is inserted into
// the table it is never compared across other items later.
item := items[i]
can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
if can != coalesceUnavailable {
result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
switch result {
case coalesceSuccess:
table.updateAt(item, i)
return groResultCoalesced
case coalesceItemInvalidCSum:
// delete the item with an invalid csum
table.deleteAt(item.key, i)
case coalescePktInvalidCSum:
// no point in inserting an item that we can't coalesce
return groResultNoop
default:
}
}
}
// failed to coalesce with any other packets; store the item in the flow
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
return groResultTableInsert
}
// applyTCPCoalesceAccounting updates bufs to account for coalescing based on the
// metadata found in table.
func applyTCPCoalesceAccounting(bufs [][]byte, offset int, table *tcpGROTable) error {
for _, items := range table.itemsByFlow {
for _, item := range items {
if item.numMerged > 0 {
hdr := virtioNetHdr{
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
hdrLen: uint16(item.iphLen + item.tcphLen),
gsoSize: item.gsoSize,
csumStart: uint16(item.iphLen),
csumOffset: 16,
}
pkt := bufs[item.bufsIndex][offset:]
// Recalculate the total len (IPv4) or payload len (IPv6).
// Recalculate the (IPv4) header checksum.
if item.key.isV6 {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len
} else {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
pkt[10], pkt[11] = 0, 0
binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length
iphCSum := ^checksum(pkt[:item.iphLen], 0) // compute IPv4 header checksum
binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field
}
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
if err != nil {
return err
}
// Calculate the pseudo header checksum and place it at the TCP
// checksum offset. Downstream checksum offloading will combine
// this with computation of the tcp header and payload checksum.
addrLen := 4
addrOffset := ipv4SrcAddrOffset
if item.key.isV6 {
addrLen = 16
addrOffset = ipv6SrcAddrOffset
}
srcAddrAt := offset + addrOffset
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen)))
binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
} else {
hdr := virtioNetHdr{}
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
if err != nil {
return err
}
}
}
}
return nil
}
// applyUDPCoalesceAccounting updates bufs to account for coalescing based on the
// metadata found in table.
func applyUDPCoalesceAccounting(bufs [][]byte, offset int, table *udpGROTable) error {
for _, items := range table.itemsByFlow {
for _, item := range items {
if item.numMerged > 0 {
hdr := virtioNetHdr{
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
hdrLen: uint16(item.iphLen + udphLen),
gsoSize: item.gsoSize,
csumStart: uint16(item.iphLen),
csumOffset: 6,
}
pkt := bufs[item.bufsIndex][offset:]
// Recalculate the total len (IPv4) or payload len (IPv6).
// Recalculate the (IPv4) header checksum.
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_UDP_L4
if item.key.isV6 {
binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len
} else {
pkt[10], pkt[11] = 0, 0
binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length
iphCSum := ^checksum(pkt[:item.iphLen], 0) // compute IPv4 header checksum
binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field
}
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
if err != nil {
return err
}
// Recalculate the UDP len field value
binary.BigEndian.PutUint16(pkt[item.iphLen+4:], uint16(len(pkt[item.iphLen:])))
// Calculate the pseudo header checksum and place it at the UDP
// checksum offset. Downstream checksum offloading will combine
// this with computation of the udp header and payload checksum.
addrLen := 4
addrOffset := ipv4SrcAddrOffset
if item.key.isV6 {
addrLen = 16
addrOffset = ipv6SrcAddrOffset
}
srcAddrAt := offset + addrOffset
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_UDP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen)))
binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
} else {
hdr := virtioNetHdr{}
err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
if err != nil {
return err
}
}
}
}
return nil
}
type groCandidateType uint8
const (
notGROCandidate groCandidateType = iota
tcp4GROCandidate
tcp6GROCandidate
udp4GROCandidate
udp6GROCandidate
)
func packetIsGROCandidate(b []byte, canUDPGRO bool) groCandidateType {
if len(b) < 28 {
return notGROCandidate
}
if b[0]>>4 == 4 {
if b[0]&0x0F != 5 {
// IPv4 packets w/IP options do not coalesce
return notGROCandidate
}
if b[9] == unix.IPPROTO_TCP && len(b) >= 40 {
return tcp4GROCandidate
}
if b[9] == unix.IPPROTO_UDP && canUDPGRO {
return udp4GROCandidate
}
} else if b[0]>>4 == 6 {
if b[6] == unix.IPPROTO_TCP && len(b) >= 60 {
return tcp6GROCandidate
}
if b[6] == unix.IPPROTO_UDP && len(b) >= 48 && canUDPGRO {
return udp6GROCandidate
}
}
return notGROCandidate
}
const (
udphLen = 8
)
// udpGRO evaluates the UDP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It returns a groResultNoop when no
// action was taken, groResultTableInsert when the evaluated packet was
// inserted into table, and groResultCoalesced when the evaluated packet was
// coalesced with another packet in table.
func udpGRO(bufs [][]byte, offset int, pktI int, table *udpGROTable, isV6 bool) groResult {
pkt := bufs[pktI][offset:]
if len(pkt) > maxUint16 {
// A valid IPv4 or IPv6 packet will never exceed this.
return groResultNoop
}
iphLen := int((pkt[0] & 0x0F) * 4)
if isV6 {
iphLen = 40
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
if ipv6HPayloadLen != len(pkt)-iphLen {
return groResultNoop
}
} else {
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
if totalLen != len(pkt) {
return groResultNoop
}
}
if len(pkt) < iphLen {
return groResultNoop
}
if len(pkt) < iphLen+udphLen {
return groResultNoop
}
if !isV6 {
if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
// no GRO support for fragmented segments for now
return groResultNoop
}
}
gsoSize := uint16(len(pkt) - udphLen - iphLen)
// not a candidate if payload len is 0
if gsoSize < 1 {
return groResultNoop
}
srcAddrOffset := ipv4SrcAddrOffset
addrLen := 4
if isV6 {
srcAddrOffset = ipv6SrcAddrOffset
addrLen = 16
}
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI)
if !existing {
return groResultTableInsert
}
// With UDP we only check the last item, otherwise we could reorder packets
// for a given flow. We must also always insert a new item, or successfully
// coalesce with an existing item, for the same reason.
item := items[len(items)-1]
can := udpPacketsCanCoalesce(pkt, uint8(iphLen), gsoSize, item, bufs, offset)
var pktCSumKnownInvalid bool
if can == coalesceAppend {
result := coalesceUDPPackets(pkt, &item, bufs, offset, isV6)
switch result {
case coalesceSuccess:
table.updateAt(item, len(items)-1)
return groResultCoalesced
case coalesceItemInvalidCSum:
// If the existing item has an invalid csum we take no action. A new
// item will be stored after it, and the existing item will never be
// revisited as part of future coalescing candidacy checks.
case coalescePktInvalidCSum:
// We must insert a new item, but we also mark it as invalid csum
// to prevent a repeat checksum validation.
pktCSumKnownInvalid = true
default:
}
}
// failed to coalesce with any other packets; store the item in the flow
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI, pktCSumKnownInvalid)
return groResultTableInsert
}
// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
// packets into toWrite. toWrite, tcpTable, and udpTable should initially be
// empty (but non-nil), and are passed in to save allocs as the caller may reset
// and recycle them across vectors of packets. canUDPGRO indicates if UDP GRO is
// supported.
func handleGRO(bufs [][]byte, offset int, tcpTable *tcpGROTable, udpTable *udpGROTable, canUDPGRO bool, toWrite *[]int) error {
for i := range bufs {
if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
return errors.New("invalid offset")
}
var result groResult
switch packetIsGROCandidate(bufs[i][offset:], canUDPGRO) {
case tcp4GROCandidate:
result = tcpGRO(bufs, offset, i, tcpTable, false)
case tcp6GROCandidate:
result = tcpGRO(bufs, offset, i, tcpTable, true)
case udp4GROCandidate:
result = udpGRO(bufs, offset, i, udpTable, false)
case udp6GROCandidate:
result = udpGRO(bufs, offset, i, udpTable, true)
}
switch result {
case groResultNoop:
hdr := virtioNetHdr{}
err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
if err != nil {
return err
}
fallthrough
case groResultTableInsert:
*toWrite = append(*toWrite, i)
}
}
errTCP := applyTCPCoalesceAccounting(bufs, offset, tcpTable)
errUDP := applyUDPCoalesceAccounting(bufs, offset, udpTable)
return errors.Join(errTCP, errUDP)
}
// gsoSplit splits packets from in into outBuffs, writing the size of each
// element into sizes. It returns the number of buffers populated, and/or an
// error.
func gsoSplit(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int, isV6 bool) (int, error) {
iphLen := int(hdr.csumStart)
srcAddrOffset := ipv6SrcAddrOffset
addrLen := 16
if !isV6 {
in[10], in[11] = 0, 0 // clear ipv4 header checksum
srcAddrOffset = ipv4SrcAddrOffset
addrLen = 4
}
transportCsumAt := int(hdr.csumStart + hdr.csumOffset)
in[transportCsumAt], in[transportCsumAt+1] = 0, 0 // clear tcp/udp checksum
var firstTCPSeqNum uint32
var protocol uint8
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 || hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV6 {
protocol = unix.IPPROTO_TCP
firstTCPSeqNum = binary.BigEndian.Uint32(in[hdr.csumStart+4:])
} else {
protocol = unix.IPPROTO_UDP
}
nextSegmentDataAt := int(hdr.hdrLen)
i := 0
for ; nextSegmentDataAt < len(in); i++ {
if i == len(outBuffs) {
return i - 1, ErrTooManySegments
}
nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
if nextSegmentEnd > len(in) {
nextSegmentEnd = len(in)
}
segmentDataLen := nextSegmentEnd - nextSegmentDataAt
totalLen := int(hdr.hdrLen) + segmentDataLen
sizes[i] = totalLen
out := outBuffs[i][outOffset:]
copy(out, in[:iphLen])
if !isV6 {
// For IPv4 we are responsible for incrementing the ID field,
// updating the total len field, and recalculating the header
// checksum.
if i > 0 {
id := binary.BigEndian.Uint16(out[4:])
id += uint16(i)
binary.BigEndian.PutUint16(out[4:], id)
}
binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
ipv4CSum := ^checksum(out[:iphLen], 0)
binary.BigEndian.PutUint16(out[10:], ipv4CSum)
} else {
// For IPv6 we are responsible for updating the payload length field.
binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
}
// copy transport header
copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])
if protocol == unix.IPPROTO_TCP {
// set TCP seq and adjust TCP flags
tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
if nextSegmentEnd != len(in) {
// FIN and PSH should only be set on last segment
clearFlags := tcpFlagFIN | tcpFlagPSH
out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
}
} else {
// set UDP header len
binary.BigEndian.PutUint16(out[hdr.csumStart+4:], uint16(segmentDataLen)+(hdr.hdrLen-hdr.csumStart))
}
// payload
copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])
// transport checksum
transportHeaderLen := int(hdr.hdrLen - hdr.csumStart)
lenForPseudo := uint16(transportHeaderLen + segmentDataLen)
transportCSumNoFold := pseudoHeaderChecksumNoFold(protocol, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], lenForPseudo)
transportCSum := ^checksum(out[hdr.csumStart:totalLen], transportCSumNoFold)
binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], transportCSum)
nextSegmentDataAt += int(hdr.gsoSize)
}
return i, nil
}
func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
cSumAt := cSumStart + cSumOffset
// The initial value at the checksum offset should be summed with the
// checksum we compute. This is typically the pseudo-header checksum.
initial := binary.BigEndian.Uint16(in[cSumAt:])
in[cSumAt], in[cSumAt+1] = 0, 0
binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial)))
return nil
}