1
0
mirror of https://git.zx2c4.com/wireguard-go synced 2024-11-15 01:05:15 +01:00

Improved readability of send/receive code

This commit is contained in:
Mathias Hall-Andersen 2017-09-09 15:03:01 +02:00
parent 89d0045214
commit f212795e51
2 changed files with 199 additions and 239 deletions

View File

@ -128,7 +128,7 @@ func (device *Device) RoutineReceiveIncomming() {
// read next datagram // read next datagram
size, raddr, err := conn.ReadFromUDP(buffer[:]) // Blocks sometimes size, raddr, err := conn.ReadFromUDP(buffer[:])
if err != nil { if err != nil {
break break
@ -222,7 +222,7 @@ func (device *Device) RoutineReceiveIncomming() {
} }
func (device *Device) RoutineDecryption() { func (device *Device) RoutineDecryption() {
var elem *QueueInboundElement
var nonce [chacha20poly1305.NonceSize]byte var nonce [chacha20poly1305.NonceSize]byte
logDebug := device.log.Debug logDebug := device.log.Debug
@ -230,50 +230,51 @@ func (device *Device) RoutineDecryption() {
for { for {
select { select {
case elem = <-device.queue.decryption:
case <-device.signal.stop: case <-device.signal.stop:
logDebug.Println("Routine, decryption worker, stopped")
return return
}
// check if dropped case elem := <-device.queue.decryption:
if elem.IsDropped() { // check if dropped
continue
}
// split message into fields if elem.IsDropped() {
continue
counter := elem.packet[MessageTransportOffsetCounter:MessageTransportOffsetContent]
content := elem.packet[MessageTransportOffsetContent:]
// decrypt with key-pair
var err error
copy(nonce[4:], counter)
elem.counter = binary.LittleEndian.Uint64(counter)
elem.keyPair.receive.mutex.RLock()
if elem.keyPair.receive.aead == nil {
// very unlikely (the key was deleted during queuing)
elem.Drop()
} else {
elem.packet, err = elem.keyPair.receive.aead.Open(
elem.buffer[:0],
nonce[:],
content,
nil,
)
if err != nil {
elem.Drop()
} }
// split message into fields
counter := elem.packet[MessageTransportOffsetCounter:MessageTransportOffsetContent]
content := elem.packet[MessageTransportOffsetContent:]
// decrypt with key-pair
copy(nonce[4:], counter)
elem.counter = binary.LittleEndian.Uint64(counter)
elem.keyPair.receive.mutex.RLock()
if elem.keyPair.receive.aead == nil {
// very unlikely (the key was deleted during queuing)
elem.Drop()
} else {
var err error
elem.packet, err = elem.keyPair.receive.aead.Open(
elem.buffer[:0],
nonce[:],
content,
nil,
)
if err != nil {
elem.Drop()
}
}
elem.keyPair.receive.mutex.RUnlock()
elem.mutex.Unlock()
} }
elem.keyPair.receive.mutex.RUnlock()
elem.mutex.Unlock()
} }
} }
/* Handles incomming packets related to handshake /* Handles incomming packets related to handshake
*
*
*/ */
func (device *Device) RoutineHandshake() { func (device *Device) RoutineHandshake() {
@ -473,7 +474,6 @@ func (device *Device) RoutineHandshake() {
} }
func (peer *Peer) RoutineSequentialReceiver() { func (peer *Peer) RoutineSequentialReceiver() {
var elem *QueueInboundElement
device := peer.device device := peer.device
@ -483,118 +483,119 @@ func (peer *Peer) RoutineSequentialReceiver() {
logDebug.Println("Routine, sequential receiver, started for peer", peer.id) logDebug.Println("Routine, sequential receiver, started for peer", peer.id)
for { for {
// wait for decryption
select { select {
case <-peer.signal.stop: case <-peer.signal.stop:
logDebug.Println("Routine, sequential receiver, stopped for peer", peer.id)
return return
case elem = <-peer.queue.inbound:
}
elem.mutex.Lock()
// process packet case elem := <-peer.queue.inbound:
if elem.IsDropped() { // wait for decryption
continue
}
// check for replay elem.mutex.Lock()
if elem.IsDropped() {
if !elem.keyPair.replayFilter.ValidateCounter(elem.counter) {
continue
}
peer.TimerAnyAuthenticatedPacketTraversal()
peer.TimerAnyAuthenticatedPacketReceived()
peer.KeepKeyFreshReceiving()
// check if using new key-pair
kp := &peer.keyPairs
kp.mutex.Lock()
if kp.next == elem.keyPair {
peer.TimerHandshakeComplete()
if kp.previous != nil {
device.DeleteKeyPair(kp.previous)
}
kp.previous = kp.current
kp.current = kp.next
kp.next = nil
}
kp.mutex.Unlock()
// check for keep-alive
if len(elem.packet) == 0 {
logDebug.Println("Received keep-alive from", peer.String())
continue
}
peer.TimerDataReceived()
// verify source and strip padding
switch elem.packet[0] >> 4 {
case ipv4.Version:
// strip padding
if len(elem.packet) < ipv4.HeaderLen {
continue continue
} }
field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2] // check for replay
length := binary.BigEndian.Uint16(field)
if int(length) > len(elem.packet) || int(length) < ipv4.HeaderLen { if !elem.keyPair.replayFilter.ValidateCounter(elem.counter) {
continue continue
} }
elem.packet = elem.packet[:length] peer.TimerAnyAuthenticatedPacketTraversal()
peer.TimerAnyAuthenticatedPacketReceived()
peer.KeepKeyFreshReceiving()
// verify IPv4 source // check if using new key-pair
src := elem.packet[IPv4offsetSrc : IPv4offsetSrc+net.IPv4len] kp := &peer.keyPairs
if device.routingTable.LookupIPv4(src) != peer { kp.mutex.Lock()
logInfo.Println("Packet with unallowed source IP from", peer.String()) if kp.next == elem.keyPair {
peer.TimerHandshakeComplete()
if kp.previous != nil {
device.DeleteKeyPair(kp.previous)
}
kp.previous = kp.current
kp.current = kp.next
kp.next = nil
}
kp.mutex.Unlock()
// check for keep-alive
if len(elem.packet) == 0 {
logDebug.Println("Received keep-alive from", peer.String())
continue
}
peer.TimerDataReceived()
// verify source and strip padding
switch elem.packet[0] >> 4 {
case ipv4.Version:
// strip padding
if len(elem.packet) < ipv4.HeaderLen {
continue
}
field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2]
length := binary.BigEndian.Uint16(field)
if int(length) > len(elem.packet) || int(length) < ipv4.HeaderLen {
continue
}
elem.packet = elem.packet[:length]
// verify IPv4 source
src := elem.packet[IPv4offsetSrc : IPv4offsetSrc+net.IPv4len]
if device.routingTable.LookupIPv4(src) != peer {
logInfo.Println("Packet with unallowed source IP from", peer.String())
continue
}
case ipv6.Version:
// strip padding
if len(elem.packet) < ipv6.HeaderLen {
continue
}
field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
length := binary.BigEndian.Uint16(field)
length += ipv6.HeaderLen
if int(length) > len(elem.packet) {
continue
}
elem.packet = elem.packet[:length]
// verify IPv6 source
src := elem.packet[IPv6offsetSrc : IPv6offsetSrc+net.IPv6len]
if device.routingTable.LookupIPv6(src) != peer {
logInfo.Println("Packet with unallowed source IP from", peer.String())
continue
}
default:
logInfo.Println("Packet with invalid IP version from", peer.String())
continue continue
} }
case ipv6.Version: // write to tun
// strip padding atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)))
_, err := device.tun.device.Write(elem.packet)
if len(elem.packet) < ipv6.HeaderLen { device.PutMessageBuffer(elem.buffer)
continue if err != nil {
logError.Println("Failed to write packet to TUN device:", err)
} }
field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
length := binary.BigEndian.Uint16(field)
length += ipv6.HeaderLen
if int(length) > len(elem.packet) {
continue
}
elem.packet = elem.packet[:length]
// verify IPv6 source
src := elem.packet[IPv6offsetSrc : IPv6offsetSrc+net.IPv6len]
if device.routingTable.LookupIPv6(src) != peer {
logInfo.Println("Packet with unallowed source IP from", peer.String())
continue
}
default:
logInfo.Println("Packet with invalid IP version from", peer.String())
continue
}
// write to tun
atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)))
_, err := device.tun.device.Write(elem.packet)
device.PutMessageBuffer(elem.buffer)
if err != nil {
logError.Println("Failed to write packet to TUN device:", err)
} }
} }
} }

View File

@ -35,7 +35,7 @@ type QueueOutboundElement struct {
dropped int32 dropped int32
mutex sync.Mutex mutex sync.Mutex
buffer *[MaxMessageSize]byte // slice holding the packet data buffer *[MaxMessageSize]byte // slice holding the packet data
packet []byte // slice of "data" (always!) packet []byte // slice of "buffer" (always!)
nonce uint64 // nonce for encryption nonce uint64 // nonce for encryption
keyPair *KeyPair // key-pair for encryption keyPair *KeyPair // key-pair for encryption
peer *Peer // related peer peer *Peer // related peer
@ -52,11 +52,6 @@ func (peer *Peer) FlushNonceQueue() {
} }
} }
var (
ErrorNoEndpoint = errors.New("No known endpoint for peer")
ErrorNoConnection = errors.New("No UDP socket for device")
)
func (device *Device) NewOutboundElement() *QueueOutboundElement { func (device *Device) NewOutboundElement() *QueueOutboundElement {
return &QueueOutboundElement{ return &QueueOutboundElement{
dropped: AtomicFalse, dropped: AtomicFalse,
@ -118,14 +113,13 @@ func (peer *Peer) SendBuffer(buffer []byte) (int, error) {
defer peer.mutex.RUnlock() defer peer.mutex.RUnlock()
endpoint := peer.endpoint endpoint := peer.endpoint
conn := peer.device.net.conn
if endpoint == nil { if endpoint == nil {
return 0, ErrorNoEndpoint return 0, errors.New("No known endpoint for peer")
} }
conn := peer.device.net.conn
if conn == nil { if conn == nil {
return 0, ErrorNoConnection return 0, errors.New("No UDP socket for device")
} }
return conn.WriteToUDP(buffer, endpoint) return conn.WriteToUDP(buffer, endpoint)
@ -189,16 +183,6 @@ func (device *Device) RoutineReadFromTUN() {
continue continue
} }
// check if known endpoint (drop early)
peer.mutex.RLock()
if peer.endpoint == nil {
peer.mutex.RUnlock()
logDebug.Println("No known endpoint for peer", peer.String())
continue
}
peer.mutex.RUnlock()
// insert into nonce/pre-handshake queue // insert into nonce/pre-handshake queue
signalSend(peer.signal.handshakeReset) signalSend(peer.signal.handshakeReset)
@ -211,86 +195,61 @@ func (device *Device) RoutineReadFromTUN() {
* Then assigns nonces to packets sequentially * Then assigns nonces to packets sequentially
* and creates "work" structs for workers * and creates "work" structs for workers
* *
* TODO: Avoid dynamic allocation of work queue elements
*
* Obs. A single instance per peer * Obs. A single instance per peer
*/ */
func (peer *Peer) RoutineNonce() { func (peer *Peer) RoutineNonce() {
var keyPair *KeyPair var keyPair *KeyPair
var elem *QueueOutboundElement
device := peer.device device := peer.device
logDebug := device.log.Debug logDebug := device.log.Debug
logDebug.Println("Routine, nonce worker, started for peer", peer.String()) logDebug.Println("Routine, nonce worker, started for peer", peer.String())
func() { for {
NextPacket:
select {
case <-peer.signal.stop:
return
for { case elem := <-peer.queue.nonce:
NextPacket:
// wait for packet
if elem == nil {
select {
case elem = <-peer.queue.nonce:
case <-peer.signal.stop:
return
}
}
// wait for key pair // wait for key pair
for { for {
select {
case <-peer.signal.newKeyPair:
default:
}
keyPair = peer.keyPairs.Current() keyPair = peer.keyPairs.Current()
if keyPair != nil && keyPair.sendNonce < RejectAfterMessages { if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
if time.Now().Sub(keyPair.created) < RejectAfterTime { if time.Now().Sub(keyPair.created) < RejectAfterTime {
break break
} }
} }
signalSend(peer.signal.handshakeBegin) signalSend(peer.signal.handshakeBegin)
logDebug.Println("Awaiting key-pair for", peer.String()) logDebug.Println("Awaiting key-pair for", peer.String())
select { select {
case <-peer.signal.newKeyPair: case <-peer.signal.newKeyPair:
logDebug.Println("Key-pair negotiated for", peer.String())
goto NextPacket
case <-peer.signal.flushNonceQueue: case <-peer.signal.flushNonceQueue:
logDebug.Println("Clearing queue for", peer.String()) logDebug.Println("Clearing queue for", peer.String())
peer.FlushNonceQueue() peer.FlushNonceQueue()
elem = nil
goto NextPacket goto NextPacket
case <-peer.signal.stop: case <-peer.signal.stop:
return return
} }
} }
// process current packet // populate work element
if elem != nil { elem.peer = peer
elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
elem.keyPair = keyPair
elem.dropped = AtomicFalse
elem.mutex.Lock()
// create work element // add to parallel and sequential queue
elem.keyPair = keyPair addToEncryptionQueue(device.queue.encryption, elem)
elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1 addToOutboundQueue(peer.queue.outbound, elem)
elem.dropped = AtomicFalse
elem.peer = peer
elem.mutex.Lock()
// add to parallel and sequential queue
addToEncryptionQueue(device.queue.encryption, elem)
addToOutboundQueue(peer.queue.outbound, elem)
elem = nil
}
} }
}() }
} }
/* Encrypts the elements in the queue /* Encrypts the elements in the queue
@ -300,7 +259,6 @@ func (peer *Peer) RoutineNonce() {
*/ */
func (device *Device) RoutineEncryption() { func (device *Device) RoutineEncryption() {
var elem *QueueOutboundElement
var nonce [chacha20poly1305.NonceSize]byte var nonce [chacha20poly1305.NonceSize]byte
logDebug := device.log.Debug logDebug := device.log.Debug
@ -311,62 +269,62 @@ func (device *Device) RoutineEncryption() {
// fetch next element // fetch next element
select { select {
case elem = <-device.queue.encryption:
case <-device.signal.stop: case <-device.signal.stop:
logDebug.Println("Routine, encryption worker, stopped") logDebug.Println("Routine, encryption worker, stopped")
return return
}
// check if dropped case elem := <-device.queue.encryption:
if elem.IsDropped() { // check if dropped
continue
}
// populate header fields if elem.IsDropped() {
continue
header := elem.buffer[:MessageTransportHeaderSize]
fieldType := header[0:4]
fieldReceiver := header[4:8]
fieldNonce := header[8:16]
binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
binary.LittleEndian.PutUint32(fieldReceiver, elem.keyPair.remoteIndex)
binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
// pad content to MTU size
mtu := int(atomic.LoadInt32(&device.tun.mtu))
pad := len(elem.packet) % PaddingMultiple
if pad > 0 {
for i := 0; i < PaddingMultiple-pad && len(elem.packet) < mtu; i++ {
elem.packet = append(elem.packet, 0)
} }
// TODO: How good is this code
// populate header fields
header := elem.buffer[:MessageTransportHeaderSize]
fieldType := header[0:4]
fieldReceiver := header[4:8]
fieldNonce := header[8:16]
binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
binary.LittleEndian.PutUint32(fieldReceiver, elem.keyPair.remoteIndex)
binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
// pad content to multiple of 16
mtu := int(atomic.LoadInt32(&device.tun.mtu))
rem := len(elem.packet) % PaddingMultiple
if rem > 0 {
for i := 0; i < PaddingMultiple-rem && len(elem.packet) < mtu; i++ {
elem.packet = append(elem.packet, 0)
}
}
// encrypt content (append to header)
binary.LittleEndian.PutUint64(nonce[4:], elem.nonce)
elem.keyPair.send.mutex.RLock()
if elem.keyPair.send.aead == nil {
// very unlikely (the key was deleted during queuing)
elem.Drop()
} else {
elem.packet = elem.keyPair.send.aead.Seal(
header,
nonce[:],
elem.packet,
nil,
)
}
elem.mutex.Unlock()
elem.keyPair.send.mutex.RUnlock()
// refresh key if necessary
elem.peer.KeepKeyFreshSending()
} }
// encrypt content (append to header)
binary.LittleEndian.PutUint64(nonce[4:], elem.nonce)
elem.keyPair.send.mutex.RLock()
if elem.keyPair.send.aead == nil {
// very unlikely (the key was deleted during queuing)
elem.Drop()
} else {
elem.packet = elem.keyPair.send.aead.Seal(
header,
nonce[:],
elem.packet,
nil,
)
}
elem.keyPair.send.mutex.RUnlock()
elem.mutex.Unlock()
// refresh key if necessary
elem.peer.KeepKeyFreshSending()
} }
} }
@ -399,6 +357,7 @@ func (peer *Peer) RoutineSequentialSender() {
_, err := peer.SendBuffer(elem.packet) _, err := peer.SendBuffer(elem.packet)
device.PutMessageBuffer(elem.buffer) device.PutMessageBuffer(elem.buffer)
if err != nil { if err != nil {
logDebug.Println("Failed to send authenticated packet to peer", peer.String())
continue continue
} }
atomic.AddUint64(&peer.stats.txBytes, length) atomic.AddUint64(&peer.stats.txBytes, length)