1
0
mirror of https://git.zx2c4.com/wireguard-go synced 2024-11-15 01:05:15 +01:00

device: simplify peer queue locking

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This commit is contained in:
Jason A. Donenfeld 2021-01-29 14:54:11 +01:00
parent f0f27d7fd2
commit 9263014ed3
4 changed files with 70 additions and 147 deletions

View File

@ -75,8 +75,8 @@ type Device struct {
} }
queue struct { queue struct {
encryption *encryptionQueue encryption *outboundQueue
decryption *decryptionQueue decryption *inboundQueue
handshake chan QueueHandshakeElement handshake chan QueueHandshakeElement
} }
@ -92,21 +92,21 @@ type Device struct {
ipcMutex sync.RWMutex ipcMutex sync.RWMutex
} }
// An encryptionQueue is a channel of QueueOutboundElements awaiting encryption. // An outboundQueue is a channel of QueueOutboundElements awaiting encryption.
// An encryptionQueue is ref-counted using its wg field. // An outboundQueue is ref-counted using its wg field.
// An encryptionQueue created with newEncryptionQueue has one reference. // An outboundQueue created with newOutboundQueue has one reference.
// Every additional writer must call wg.Add(1). // Every additional writer must call wg.Add(1).
// Every completed writer must call wg.Done(). // Every completed writer must call wg.Done().
// When no further writers will be added, // When no further writers will be added,
// call wg.Done to remove the initial reference. // call wg.Done to remove the initial reference.
// When the refcount hits 0, the queue's channel is closed. // When the refcount hits 0, the queue's channel is closed.
type encryptionQueue struct { type outboundQueue struct {
c chan *QueueOutboundElement c chan *QueueOutboundElement
wg sync.WaitGroup wg sync.WaitGroup
} }
func newEncryptionQueue() *encryptionQueue { func newOutboundQueue() *outboundQueue {
q := &encryptionQueue{ q := &outboundQueue{
c: make(chan *QueueOutboundElement, QueueOutboundSize), c: make(chan *QueueOutboundElement, QueueOutboundSize),
} }
q.wg.Add(1) q.wg.Add(1)
@ -117,14 +117,14 @@ func newEncryptionQueue() *encryptionQueue {
return q return q
} }
// A decryptionQueue is similar to an encryptionQueue; see those docs. // A inboundQueue is similar to an outboundQueue; see those docs.
type decryptionQueue struct { type inboundQueue struct {
c chan *QueueInboundElement c chan *QueueInboundElement
wg sync.WaitGroup wg sync.WaitGroup
} }
func newDecryptionQueue() *decryptionQueue { func newInboundQueue() *inboundQueue {
q := &decryptionQueue{ q := &inboundQueue{
c: make(chan *QueueInboundElement, QueueInboundSize), c: make(chan *QueueInboundElement, QueueInboundSize),
} }
q.wg.Add(1) q.wg.Add(1)
@ -323,8 +323,8 @@ func NewDevice(tunDevice tun.Device, logger *Logger) *Device {
// create queues // create queues
device.queue.handshake = make(chan QueueHandshakeElement, QueueHandshakeSize) device.queue.handshake = make(chan QueueHandshakeElement, QueueHandshakeSize)
device.queue.encryption = newEncryptionQueue() device.queue.encryption = newOutboundQueue()
device.queue.decryption = newDecryptionQueue() device.queue.decryption = newInboundQueue()
// prepare signals // prepare signals

View File

@ -25,6 +25,7 @@ type Peer struct {
endpoint conn.Endpoint endpoint conn.Endpoint
persistentKeepaliveInterval uint32 // accessed atomically persistentKeepaliveInterval uint32 // accessed atomically
firstTrieEntry *trieEntry firstTrieEntry *trieEntry
stopping sync.WaitGroup // routines pending stop
// These fields are accessed with atomic operations, which must be // These fields are accessed with atomic operations, which must be
// 64-bit aligned even on 32-bit platforms. Go guarantees that an // 64-bit aligned even on 32-bit platforms. Go guarantees that an
@ -53,14 +54,8 @@ type Peer struct {
queue struct { queue struct {
sync.RWMutex sync.RWMutex
staged chan *QueueOutboundElement // staged packets before a handshake is available staged chan *QueueOutboundElement // staged packets before a handshake is available
outbound chan *QueueOutboundElement // sequential ordering of work outbound chan *QueueOutboundElement // sequential ordering of udp transmission
inbound chan *QueueInboundElement // sequential ordering of work inbound chan *QueueInboundElement // sequential ordering of tun writing
}
routines struct {
sync.Mutex // held when stopping routines
stopping sync.WaitGroup // routines pending stop
stop chan struct{} // size 0, stop all go routines in peer
} }
cookieGenerator CookieGenerator cookieGenerator CookieGenerator
@ -72,7 +67,6 @@ func (device *Device) NewPeer(pk NoisePublicKey) (*Peer, error) {
} }
// lock resources // lock resources
device.staticIdentity.RLock() device.staticIdentity.RLock()
defer device.staticIdentity.RUnlock() defer device.staticIdentity.RUnlock()
@ -80,13 +74,11 @@ func (device *Device) NewPeer(pk NoisePublicKey) (*Peer, error) {
defer device.peers.Unlock() defer device.peers.Unlock()
// check if over limit // check if over limit
if len(device.peers.keyMap) >= MaxPeers { if len(device.peers.keyMap) >= MaxPeers {
return nil, errors.New("too many peers") return nil, errors.New("too many peers")
} }
// create peer // create peer
peer := new(Peer) peer := new(Peer)
peer.Lock() peer.Lock()
defer peer.Unlock() defer peer.Unlock()
@ -95,14 +87,12 @@ func (device *Device) NewPeer(pk NoisePublicKey) (*Peer, error) {
peer.device = device peer.device = device
// map public key // map public key
_, ok := device.peers.keyMap[pk] _, ok := device.peers.keyMap[pk]
if ok { if ok {
return nil, errors.New("adding existing peer") return nil, errors.New("adding existing peer")
} }
// pre-compute DH // pre-compute DH
handshake := &peer.handshake handshake := &peer.handshake
handshake.mutex.Lock() handshake.mutex.Lock()
handshake.precomputedStaticStatic = device.staticIdentity.privateKey.sharedSecret(pk) handshake.precomputedStaticStatic = device.staticIdentity.privateKey.sharedSecret(pk)
@ -110,16 +100,13 @@ func (device *Device) NewPeer(pk NoisePublicKey) (*Peer, error) {
handshake.mutex.Unlock() handshake.mutex.Unlock()
// reset endpoint // reset endpoint
peer.endpoint = nil peer.endpoint = nil
// add // add
device.peers.keyMap[pk] = peer device.peers.keyMap[pk] = peer
device.peers.empty.Set(false) device.peers.empty.Set(false)
// start peer // start peer
if peer.device.isUp.Get() { if peer.device.isUp.Get() {
peer.Start() peer.Start()
} }
@ -164,17 +151,14 @@ func (peer *Peer) String() string {
} }
func (peer *Peer) Start() { func (peer *Peer) Start() {
// should never start a peer on a closed device // should never start a peer on a closed device
if peer.device.isClosed.Get() { if peer.device.isClosed.Get() {
return return
} }
// prevent simultaneous start/stop operations // prevent simultaneous start/stop operations
peer.queue.Lock()
peer.routines.Lock() defer peer.queue.Unlock()
defer peer.routines.Unlock()
if peer.isRunning.Get() { if peer.isRunning.Get() {
return return
@ -184,23 +168,19 @@ func (peer *Peer) Start() {
device.log.Verbosef("%v - Starting...", peer) device.log.Verbosef("%v - Starting...", peer)
// reset routine state // reset routine state
peer.stopping.Wait()
peer.routines.stopping.Wait() peer.stopping.Add(2)
peer.routines.stop = make(chan struct{})
peer.routines.stopping.Add(1)
// prepare queues // prepare queues
peer.queue.Lock()
peer.queue.staged = make(chan *QueueOutboundElement, QueueStagedSize)
peer.queue.outbound = make(chan *QueueOutboundElement, QueueOutboundSize) peer.queue.outbound = make(chan *QueueOutboundElement, QueueOutboundSize)
peer.queue.inbound = make(chan *QueueInboundElement, QueueInboundSize) peer.queue.inbound = make(chan *QueueInboundElement, QueueInboundSize)
peer.queue.Unlock() if peer.queue.staged == nil {
peer.queue.staged = make(chan *QueueOutboundElement, QueueStagedSize)
}
peer.timersInit() peer.timersInit()
peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second)) peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
// wait for routines to start
go peer.RoutineSequentialSender() go peer.RoutineSequentialSender()
go peer.RoutineSequentialReceiver() go peer.RoutineSequentialReceiver()
@ -254,31 +234,20 @@ func (peer *Peer) ExpireCurrentKeypairs() {
} }
func (peer *Peer) Stop() { func (peer *Peer) Stop() {
peer.queue.Lock()
// prevent simultaneous start/stop operations defer peer.queue.Unlock()
if !peer.isRunning.Swap(false) { if !peer.isRunning.Swap(false) {
return return
} }
peer.routines.Lock()
defer peer.routines.Unlock()
peer.device.log.Verbosef("%v - Stopping...", peer) peer.device.log.Verbosef("%v - Stopping...", peer)
peer.timersStop() peer.timersStop()
// stop & wait for ongoing peer routines
close(peer.routines.stop)
peer.routines.stopping.Wait()
// close queues
peer.queue.Lock()
close(peer.queue.inbound) close(peer.queue.inbound)
close(peer.queue.outbound) close(peer.queue.outbound)
peer.queue.Unlock() peer.stopping.Wait()
peer.ZeroAndFlushAll() peer.ZeroAndFlushAll()
} }

View File

@ -174,7 +174,6 @@ func (device *Device) RoutineReceiveIncoming(IP int, bind conn.Bind) {
elem.Lock() elem.Lock()
// add to decryption queues // add to decryption queues
peer.queue.RLock() peer.queue.RLock()
if peer.isRunning.Get() { if peer.isRunning.Get() {
peer.queue.inbound <- elem peer.queue.inbound <- elem
@ -433,52 +432,25 @@ func (device *Device) RoutineHandshake() {
func (peer *Peer) RoutineSequentialReceiver() { func (peer *Peer) RoutineSequentialReceiver() {
device := peer.device device := peer.device
var elem *QueueInboundElement
defer func() { defer func() {
device.log.Verbosef("%v - Routine: sequential receiver - stopped", peer) device.log.Verbosef("%v - Routine: sequential receiver - stopped", peer)
peer.routines.stopping.Done() peer.stopping.Done()
if elem != nil {
device.PutMessageBuffer(elem.buffer)
device.PutInboundElement(elem)
}
}() }()
device.log.Verbosef("%v - Routine: sequential receiver - started", peer) device.log.Verbosef("%v - Routine: sequential receiver - started", peer)
for { for elem := range peer.queue.inbound {
if elem != nil { var err error
device.PutMessageBuffer(elem.buffer)
device.PutInboundElement(elem)
elem = nil
}
var elemOk bool
select {
case <-peer.routines.stop:
return
case elem, elemOk = <-peer.queue.inbound:
if !elemOk {
return
}
}
// wait for decryption
elem.Lock() elem.Lock()
if elem.packet == nil { if elem.packet == nil {
// decryption failed // decryption failed
continue goto skip
} }
// check for replay
if !elem.keypair.replayFilter.ValidateCounter(elem.counter, RejectAfterMessages) { if !elem.keypair.replayFilter.ValidateCounter(elem.counter, RejectAfterMessages) {
continue goto skip
} }
// update endpoint
peer.SetEndpointFromPacket(elem.endpoint) peer.SetEndpointFromPacket(elem.endpoint)
// check if using new keypair
if peer.ReceivedWithKeypair(elem.keypair) { if peer.ReceivedWithKeypair(elem.keypair) {
peer.timersHandshakeComplete() peer.timersHandshakeComplete()
peer.SendStagedPackets() peer.SendStagedPackets()
@ -489,83 +461,63 @@ func (peer *Peer) RoutineSequentialReceiver() {
peer.timersAnyAuthenticatedPacketReceived() peer.timersAnyAuthenticatedPacketReceived()
atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)+MinMessageSize)) atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)+MinMessageSize))
// check for keepalive
if len(elem.packet) == 0 { if len(elem.packet) == 0 {
device.log.Verbosef("%v - Receiving keepalive packet", peer) device.log.Verbosef("%v - Receiving keepalive packet", peer)
continue goto skip
} }
peer.timersDataReceived() peer.timersDataReceived()
// verify source and strip padding
switch elem.packet[0] >> 4 { switch elem.packet[0] >> 4 {
case ipv4.Version: case ipv4.Version:
// strip padding
if len(elem.packet) < ipv4.HeaderLen { if len(elem.packet) < ipv4.HeaderLen {
continue goto skip
} }
field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2] field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2]
length := binary.BigEndian.Uint16(field) length := binary.BigEndian.Uint16(field)
if int(length) > len(elem.packet) || int(length) < ipv4.HeaderLen { if int(length) > len(elem.packet) || int(length) < ipv4.HeaderLen {
continue goto skip
} }
elem.packet = elem.packet[:length] elem.packet = elem.packet[:length]
// verify IPv4 source
src := elem.packet[IPv4offsetSrc : IPv4offsetSrc+net.IPv4len] src := elem.packet[IPv4offsetSrc : IPv4offsetSrc+net.IPv4len]
if device.allowedips.LookupIPv4(src) != peer { if device.allowedips.LookupIPv4(src) != peer {
device.log.Verbosef("IPv4 packet with disallowed source address from %v", peer) device.log.Verbosef("IPv4 packet with disallowed source address from %v", peer)
continue goto skip
} }
case ipv6.Version: case ipv6.Version:
// strip padding
if len(elem.packet) < ipv6.HeaderLen { if len(elem.packet) < ipv6.HeaderLen {
continue goto skip
} }
field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2] field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
length := binary.BigEndian.Uint16(field) length := binary.BigEndian.Uint16(field)
length += ipv6.HeaderLen length += ipv6.HeaderLen
if int(length) > len(elem.packet) { if int(length) > len(elem.packet) {
continue goto skip
} }
elem.packet = elem.packet[:length] elem.packet = elem.packet[:length]
// verify IPv6 source
src := elem.packet[IPv6offsetSrc : IPv6offsetSrc+net.IPv6len] src := elem.packet[IPv6offsetSrc : IPv6offsetSrc+net.IPv6len]
if device.allowedips.LookupIPv6(src) != peer { if device.allowedips.LookupIPv6(src) != peer {
device.log.Verbosef("IPv6 packet with disallowed source address from %v", peer) device.log.Verbosef("IPv6 packet with disallowed source address from %v", peer)
continue goto skip
} }
default: default:
device.log.Verbosef("Packet with invalid IP version from %v", peer) device.log.Verbosef("Packet with invalid IP version from %v", peer)
continue goto skip
} }
// write to tun device _, err = device.tun.device.Write(elem.buffer[:MessageTransportOffsetContent+len(elem.packet)], MessageTransportOffsetContent)
offset := MessageTransportOffsetContent
_, err := device.tun.device.Write(elem.buffer[:offset+len(elem.packet)], offset)
if err != nil && !device.isClosed.Get() { if err != nil && !device.isClosed.Get() {
device.log.Errorf("Failed to write packet to TUN device: %v", err) device.log.Errorf("Failed to write packet to TUN device: %v", err)
} }
if len(peer.queue.inbound) == 0 { if len(peer.queue.inbound) == 0 {
err := device.tun.device.Flush() err = device.tun.device.Flush()
if err != nil { if err != nil {
peer.device.log.Errorf("Unable to flush packets: %v", err) peer.device.log.Errorf("Unable to flush packets: %v", err)
} }
} }
skip:
device.PutMessageBuffer(elem.buffer)
device.PutInboundElement(elem)
} }
} }

View File

@ -74,12 +74,8 @@ func (elem *QueueOutboundElement) clearPointers() {
/* Queues a keepalive if no packets are queued for peer /* Queues a keepalive if no packets are queued for peer
*/ */
func (peer *Peer) SendKeepalive() { func (peer *Peer) SendKeepalive() {
var elem *QueueOutboundElement if len(peer.queue.staged) == 0 && peer.isRunning.Get() {
peer.queue.RLock() elem := peer.device.NewOutboundElement()
if len(peer.queue.staged) != 0 || !peer.isRunning.Get() {
goto out
}
elem = peer.device.NewOutboundElement()
elem.packet = nil elem.packet = nil
select { select {
case peer.queue.staged <- elem: case peer.queue.staged <- elem:
@ -88,8 +84,7 @@ func (peer *Peer) SendKeepalive() {
peer.device.PutMessageBuffer(elem.buffer) peer.device.PutMessageBuffer(elem.buffer)
peer.device.PutOutboundElement(elem) peer.device.PutOutboundElement(elem)
} }
out: }
peer.queue.RUnlock()
peer.SendStagedPackets() peer.SendStagedPackets()
} }
@ -176,7 +171,6 @@ func (peer *Peer) SendHandshakeResponse() error {
} }
func (device *Device) SendHandshakeCookie(initiatingElem *QueueHandshakeElement) error { func (device *Device) SendHandshakeCookie(initiatingElem *QueueHandshakeElement) error {
device.log.Verbosef("Sending cookie response for denied handshake message for %v", initiatingElem.endpoint.DstToString()) device.log.Verbosef("Sending cookie response for denied handshake message for %v", initiatingElem.endpoint.DstToString())
sender := binary.LittleEndian.Uint32(initiatingElem.packet[4:8]) sender := binary.LittleEndian.Uint32(initiatingElem.packet[4:8])
@ -297,6 +291,8 @@ func (peer *Peer) StagePacket(elem *QueueOutboundElement) {
} }
func (peer *Peer) SendStagedPackets() { func (peer *Peer) SendStagedPackets() {
peer.device.queue.encryption.wg.Add(1)
defer peer.device.queue.encryption.wg.Done()
top: top:
if len(peer.queue.staged) == 0 || !peer.device.isUp.Get() { if len(peer.queue.staged) == 0 || !peer.device.isUp.Get() {
return return
@ -307,8 +303,6 @@ top:
peer.SendHandshakeInitiation(false) peer.SendHandshakeInitiation(false)
return return
} }
peer.device.queue.encryption.wg.Add(1)
defer peer.device.queue.encryption.wg.Done()
for { for {
select { select {
@ -325,8 +319,15 @@ top:
elem.Lock() elem.Lock()
// add to parallel and sequential queue // add to parallel and sequential queue
peer.queue.RLock()
if peer.isRunning.Get() {
peer.queue.outbound <- elem peer.queue.outbound <- elem
peer.device.queue.encryption.c <- elem peer.device.queue.encryption.c <- elem
} else {
peer.device.PutMessageBuffer(elem.buffer)
peer.device.PutOutboundElement(elem)
}
peer.queue.RUnlock()
default: default:
return return
} }
@ -410,10 +411,11 @@ func (device *Device) RoutineEncryption() {
* The routine terminates then the outbound queue is closed. * The routine terminates then the outbound queue is closed.
*/ */
func (peer *Peer) RoutineSequentialSender() { func (peer *Peer) RoutineSequentialSender() {
device := peer.device device := peer.device
defer func() {
defer device.log.Verbosef("%v - Routine: sequential sender - stopped", peer) defer device.log.Verbosef("%v - Routine: sequential sender - stopped", peer)
peer.stopping.Done()
}()
device.log.Verbosef("%v - Routine: sequential sender - started", peer) device.log.Verbosef("%v - Routine: sequential sender - started", peer)
for elem := range peer.queue.outbound { for elem := range peer.queue.outbound {