1
0
mirror of https://git.zx2c4.com/wireguard-go synced 2024-11-15 01:05:15 +01:00
wireguard-go/src/send.go

391 lines
8.0 KiB
Go
Raw Normal View History

2017-06-26 13:14:02 +02:00
package main
import (
"encoding/binary"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
2017-06-26 13:14:02 +02:00
"net"
"sync"
"sync/atomic"
"time"
2017-06-26 13:14:02 +02:00
)
/* Handles outbound flow
*
* 1. TUN queue
* 2. Routing (sequential)
* 3. Nonce assignment (sequential)
* 4. Encryption (parallel)
* 5. Transmission (sequential)
2017-06-26 13:14:02 +02:00
*
* The order of packets (per peer) is maintained.
* The functions in this file occure (roughly) in the order packets are processed.
2017-06-26 13:14:02 +02:00
*/
/* The sequential consumers will attempt to take the lock,
* workers release lock when they have completed work (encryption) on the packet.
*
* If the element is inserted into the "encryption queue",
* the content is preceeded by enough "junk" to contain the transport header
2017-07-07 13:47:09 +02:00
* (to allow the construction of transport messages in-place)
*/
type QueueOutboundElement struct {
2017-07-08 23:51:26 +02:00
dropped int32
mutex sync.Mutex
buffer *[MaxMessageSize]byte // slice holding the packet data
packet []byte // slice of "data" (always!)
nonce uint64 // nonce for encryption
keyPair *KeyPair // key-pair for encryption
peer *Peer // related peer
2017-06-26 13:14:02 +02:00
}
func (peer *Peer) FlushNonceQueue() {
elems := len(peer.queue.nonce)
for i := 0; i < elems; i++ {
select {
case <-peer.queue.nonce:
default:
return
}
}
2017-06-27 17:33:06 +02:00
}
func (device *Device) NewOutboundElement() *QueueOutboundElement {
return &QueueOutboundElement{
dropped: AtomicFalse,
buffer: device.pool.messageBuffers.Get().(*[MaxMessageSize]byte),
}
}
func (elem *QueueOutboundElement) Drop() {
2017-07-08 23:51:26 +02:00
atomic.StoreInt32(&elem.dropped, AtomicTrue)
}
func (elem *QueueOutboundElement) IsDropped() bool {
2017-07-08 23:51:26 +02:00
return atomic.LoadInt32(&elem.dropped) == AtomicTrue
}
func addToOutboundQueue(
queue chan *QueueOutboundElement,
element *QueueOutboundElement,
) {
for {
select {
case queue <- element:
return
default:
select {
case old := <-queue:
old.Drop()
default:
}
}
}
}
2017-06-26 13:14:02 +02:00
2017-07-08 23:51:26 +02:00
func addToEncryptionQueue(
queue chan *QueueOutboundElement,
element *QueueOutboundElement,
) {
for {
select {
case queue <- element:
return
default:
select {
case old := <-queue:
old.Drop()
old.mutex.Unlock()
default:
}
}
}
}
/* Reads packets from the TUN and inserts
* into nonce queue for peer
*
* Obs. Single instance per TUN device
*/
func (device *Device) RoutineReadFromTUN(tun TUNDevice) {
if tun == nil {
return
}
elem := device.NewOutboundElement()
logDebug := device.log.Debug
logError := device.log.Error
logDebug.Println("Routine, TUN Reader: started")
for {
// read packet
2017-06-26 13:14:02 +02:00
if elem == nil {
elem = device.NewOutboundElement()
}
elem.packet = elem.buffer[MessageTransportHeaderSize:]
size, err := tun.Read(elem.packet)
if err != nil {
// stop process
logError.Println("Failed to read packet from TUN device:", err)
device.Close()
return
}
elem.packet = elem.packet[:size]
if len(elem.packet) < ipv4.HeaderLen {
logError.Println("Packet too short, length:", size)
continue
}
2017-06-26 13:14:02 +02:00
// lookup peer
2017-06-26 13:14:02 +02:00
var peer *Peer
switch elem.packet[0] >> 4 {
case ipv4.Version:
dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
peer = device.routingTable.LookupIPv4(dst)
2017-06-26 13:14:02 +02:00
case ipv6.Version:
dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
peer = device.routingTable.LookupIPv6(dst)
2017-06-26 13:14:02 +02:00
default:
logDebug.Println("Receieved packet with unknown IP version")
}
if peer == nil {
continue
}
if peer.endpoint == nil {
logDebug.Println("No known endpoint for peer", peer.String())
continue
}
// insert into nonce/pre-handshake queue
addToOutboundQueue(peer.queue.nonce, elem)
elem = nil
2017-06-26 13:14:02 +02:00
}
}
/* Queues packets when there is no handshake.
* Then assigns nonces to packets sequentially
* and creates "work" structs for workers
2017-06-26 13:14:02 +02:00
*
* TODO: Avoid dynamic allocation of work queue elements
2017-06-26 13:14:02 +02:00
*
* Obs. A single instance per peer
2017-06-26 13:14:02 +02:00
*/
func (peer *Peer) RoutineNonce() {
var keyPair *KeyPair
var elem *QueueOutboundElement
device := peer.device
2017-07-07 13:47:09 +02:00
logDebug := device.log.Debug
logDebug.Println("Routine, nonce worker, started for peer", peer.String())
func() {
for {
NextPacket:
// wait for packet
if elem == nil {
select {
case elem = <-peer.queue.nonce:
case <-peer.signal.stop:
return
}
}
2017-06-26 13:14:02 +02:00
// wait for key pair
for {
select {
case <-peer.signal.newKeyPair:
default:
}
keyPair = peer.keyPairs.Current()
if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
if time.Now().Sub(keyPair.created) < RejectAfterTime {
break
}
}
2017-07-08 23:51:26 +02:00
signalSend(peer.signal.handshakeBegin)
logDebug.Println("Awaiting key-pair for", peer.String())
select {
case <-peer.signal.newKeyPair:
logDebug.Println("Key-pair negotiated for", peer.String())
goto NextPacket
case <-peer.signal.flushNonceQueue:
logDebug.Println("Clearing queue for", peer.String())
peer.FlushNonceQueue()
elem = nil
goto NextPacket
case <-peer.signal.stop:
return
}
}
2017-06-26 13:14:02 +02:00
// process current packet
2017-06-26 13:14:02 +02:00
if elem != nil {
2017-06-26 13:14:02 +02:00
// create work element
2017-06-26 13:14:02 +02:00
elem.keyPair = keyPair
elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
2017-07-08 23:51:26 +02:00
elem.dropped = AtomicFalse
elem.peer = peer
elem.mutex.Lock()
2017-07-08 23:51:26 +02:00
// add to parallel and sequential queue
2017-07-08 23:51:26 +02:00
addToEncryptionQueue(device.queue.encryption, elem)
addToOutboundQueue(peer.queue.outbound, elem)
elem = nil
}
2017-06-26 13:14:02 +02:00
}
}()
2017-06-26 13:14:02 +02:00
}
/* Encrypts the elements in the queue
* and marks them for sequential consumption (by releasing the mutex)
*
* Obs. One instance per core
*/
func (device *Device) RoutineEncryption() {
2017-07-17 16:16:18 +02:00
var elem *QueueOutboundElement
var nonce [chacha20poly1305.NonceSize]byte
2017-07-17 16:16:18 +02:00
logDebug := device.log.Debug
logDebug.Println("Routine, encryption worker, started")
for {
// fetch next element
select {
case elem = <-device.queue.encryption:
case <-device.signal.stop:
logDebug.Println("Routine, encryption worker, stopped")
return
}
2017-07-08 23:51:26 +02:00
// check if dropped
2017-07-17 16:16:18 +02:00
if elem.IsDropped() {
2017-07-01 23:29:22 +02:00
continue
}
// populate header fields
2017-07-02 15:28:38 +02:00
2017-07-17 16:16:18 +02:00
header := elem.buffer[:MessageTransportHeaderSize]
2017-06-26 13:14:02 +02:00
fieldType := header[0:4]
fieldReceiver := header[4:8]
fieldNonce := header[8:16]
2017-07-02 15:28:38 +02:00
binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
2017-07-17 16:16:18 +02:00
binary.LittleEndian.PutUint32(fieldReceiver, elem.keyPair.remoteIndex)
binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
// pad content to MTU size
mtu := int(atomic.LoadInt32(&device.mtu))
2017-07-17 16:16:18 +02:00
for i := len(elem.packet); i < mtu; i++ {
elem.packet = append(elem.packet, 0)
}
2017-07-02 15:28:38 +02:00
2017-07-18 14:15:29 +02:00
// encrypt content (append to header)
2017-06-26 13:14:02 +02:00
2017-07-17 16:16:18 +02:00
binary.LittleEndian.PutUint64(nonce[4:], elem.nonce)
elem.packet = elem.keyPair.send.Seal(
2017-07-18 14:15:29 +02:00
header,
2017-07-07 13:47:09 +02:00
nonce[:],
2017-07-17 16:16:18 +02:00
elem.packet,
2017-07-07 13:47:09 +02:00
nil,
)
2017-07-17 16:16:18 +02:00
elem.mutex.Unlock()
// refresh key if necessary
2017-07-17 16:16:18 +02:00
elem.peer.KeepKeyFreshSending()
}
}
/* Sequentially reads packets from queue and sends to endpoint
*
* Obs. Single instance per peer.
* The routine terminates then the outbound queue is closed.
*/
func (peer *Peer) RoutineSequentialSender() {
device := peer.device
2017-07-08 23:51:26 +02:00
logDebug := device.log.Debug
logDebug.Println("Routine, sequential sender, started for", peer.String())
2017-07-08 23:51:26 +02:00
for {
select {
case <-peer.signal.stop:
logDebug.Println("Routine, sequential sender, stopped for", peer.String())
return
2017-07-17 16:16:18 +02:00
case elem := <-peer.queue.outbound:
elem.mutex.Lock()
2017-07-08 23:51:26 +02:00
func() {
2017-07-17 16:16:18 +02:00
if elem.IsDropped() {
return
}
2017-07-17 16:16:18 +02:00
// get endpoint and connection
peer.mutex.RLock()
2017-07-17 16:16:18 +02:00
endpoint := peer.endpoint
peer.mutex.RUnlock()
if endpoint == nil {
logDebug.Println("No endpoint for", peer.String())
return
}
device.net.mutex.RLock()
2017-07-17 16:16:18 +02:00
conn := device.net.conn
device.net.mutex.RUnlock()
if conn == nil {
2017-07-07 13:47:09 +02:00
logDebug.Println("No source for device")
return
}
2017-07-17 16:16:18 +02:00
// send message and refresh keys
2017-07-17 16:16:18 +02:00
_, err := conn.WriteToUDP(elem.packet, endpoint)
2017-07-01 23:29:22 +02:00
if err != nil {
return
}
atomic.AddUint64(&peer.stats.txBytes, uint64(len(elem.packet)))
2017-07-08 23:51:26 +02:00
peer.TimerResetKeepalive()
}()
2017-07-17 16:16:18 +02:00
device.PutMessageBuffer(elem.buffer)
}
2017-06-26 13:14:02 +02:00
}
}