1
0
mirror of https://git.zx2c4.com/wireguard-go synced 2024-11-15 01:05:15 +01:00
wireguard-go/src/receive.go

406 lines
7.7 KiB
Go
Raw Normal View History

2017-07-01 23:29:22 +02:00
package main
import (
"bytes"
"encoding/binary"
"golang.org/x/crypto/chacha20poly1305"
"net"
"sync"
"sync/atomic"
"time"
)
const (
ElementStateOkay = iota
ElementStateDropped
)
type QueueHandshakeElement struct {
msgType uint32
packet []byte
source *net.UDPAddr
}
type QueueInboundElement struct {
state uint32
mutex sync.Mutex
packet []byte
counter uint64
keyPair *KeyPair
}
func (elem *QueueInboundElement) Drop() {
atomic.StoreUint32(&elem.state, ElementStateDropped)
elem.mutex.Unlock()
}
func (device *Device) RoutineReceiveIncomming() {
var packet []byte
debugLog := device.log.Debug
debugLog.Println("Routine, receive incomming, started")
errorLog := device.log.Error
for {
// check if stopped
select {
case <-device.signal.stop:
return
default:
}
// read next datagram
if packet == nil {
packet = make([]byte, 1<<16)
}
device.net.mutex.RLock()
conn := device.net.conn
device.net.mutex.RUnlock()
conn.SetReadDeadline(time.Now().Add(time.Second))
size, raddr, err := conn.ReadFromUDP(packet)
if err != nil {
continue
}
if size < MinMessageSize {
continue
}
// handle packet
packet = packet[:size]
2017-07-02 15:28:38 +02:00
debugLog.Println("GOT:", packet)
2017-07-01 23:29:22 +02:00
msgType := binary.LittleEndian.Uint32(packet[:4])
func() {
switch msgType {
case MessageInitiationType, MessageResponseType:
// verify mac1
if !device.mac.CheckMAC1(packet) {
debugLog.Println("Received packet with invalid mac1")
return
}
// check if busy, TODO: refine definition of "busy"
busy := len(device.queue.handshake) > QueueHandshakeBusySize
if busy && !device.mac.CheckMAC2(packet, raddr) {
sender := binary.LittleEndian.Uint32(packet[4:8]) // "sender" follows "type"
reply, err := device.CreateMessageCookieReply(packet, sender, raddr)
if err != nil {
errorLog.Println("Failed to create cookie reply:", err)
return
}
writer := bytes.NewBuffer(packet[:0])
binary.Write(writer, binary.LittleEndian, reply)
packet = writer.Bytes()
_, err = device.net.conn.WriteToUDP(packet, raddr)
if err != nil {
debugLog.Println("Failed to send cookie reply:", err)
}
return
}
// add to handshake queue
device.queue.handshake <- QueueHandshakeElement{
msgType: msgType,
packet: packet,
source: raddr,
}
case MessageCookieReplyType:
// verify and update peer cookie state
if len(packet) != MessageCookieReplySize {
return
}
var reply MessageCookieReply
reader := bytes.NewReader(packet)
err := binary.Read(reader, binary.LittleEndian, &reply)
if err != nil {
debugLog.Println("Failed to decode cookie reply")
return
}
device.ConsumeMessageCookieReply(&reply)
case MessageTransportType:
debugLog.Println("DEBUG: Got transport")
// lookup key pair
if len(packet) < MessageTransportSize {
return
}
receiver := binary.LittleEndian.Uint32(
packet[MessageTransportOffsetReceiver:MessageTransportOffsetCounter],
)
value := device.indices.Lookup(receiver)
keyPair := value.keyPair
if keyPair == nil {
return
}
// check key-pair expiry
if keyPair.created.Add(RejectAfterTime).Before(time.Now()) {
return
}
// add to peer queue
peer := value.peer
work := new(QueueInboundElement)
work.packet = packet
work.keyPair = keyPair
work.state = ElementStateOkay
work.mutex.Lock()
// add to parallel decryption queue
func() {
for {
select {
case device.queue.decryption <- work:
return
default:
select {
case elem := <-device.queue.decryption:
elem.Drop()
default:
}
}
}
}()
// add to sequential inbound queue
func() {
for {
select {
case peer.queue.inbound <- work:
break
default:
select {
case elem := <-peer.queue.inbound:
elem.Drop()
default:
}
}
}
}()
default:
// unknown message type
}
}()
}
}
func (device *Device) RoutineDecryption() {
var elem *QueueInboundElement
var nonce [chacha20poly1305.NonceSize]byte
for {
select {
case elem = <-device.queue.decryption:
case <-device.signal.stop:
return
}
// check if dropped
state := atomic.LoadUint32(&elem.state)
if state != ElementStateOkay {
continue
}
// split message into fields
counter := binary.LittleEndian.Uint64(
elem.packet[MessageTransportOffsetCounter:MessageTransportOffsetContent],
)
content := elem.packet[MessageTransportOffsetContent:]
// decrypt with key-pair
var err error
binary.LittleEndian.PutUint64(nonce[4:], counter)
elem.packet, err = elem.keyPair.recv.Open(elem.packet[:0], nonce[:], content, nil)
if err != nil {
elem.Drop()
continue
}
// release to consumer
elem.counter = counter
elem.mutex.Unlock()
}
}
/* Handles incomming packets related to handshake
*
*
*/
func (device *Device) RoutineHandshake() {
logInfo := device.log.Info
logError := device.log.Error
logDebug := device.log.Debug
var elem QueueHandshakeElement
for {
select {
case elem = <-device.queue.handshake:
case <-device.signal.stop:
return
}
func() {
switch elem.msgType {
case MessageInitiationType:
// unmarshal
if len(elem.packet) != MessageInitiationSize {
return
}
var msg MessageInitiation
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &msg)
if err != nil {
logError.Println("Failed to decode initiation message")
return
}
// consume initiation
peer := device.ConsumeMessageInitiation(&msg)
if peer == nil {
logInfo.Println(
"Recieved invalid initiation message from",
elem.source.IP.String(),
elem.source.Port,
)
return
}
logDebug.Println("Recieved valid initiation message for peer", peer.id)
case MessageResponseType:
// unmarshal
if len(elem.packet) != MessageResponseSize {
return
}
var msg MessageResponse
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &msg)
if err != nil {
logError.Println("Failed to decode response message")
return
}
// consume response
peer := device.ConsumeMessageResponse(&msg)
if peer == nil {
logInfo.Println(
"Recieved invalid response message from",
elem.source.IP.String(),
elem.source.Port,
)
return
}
sendSignal(peer.signal.handshakeCompleted)
logDebug.Println("Recieved valid response message for peer", peer.id)
peer.NewKeyPair()
peer.SendKeepAlive()
default:
device.log.Error.Println("Invalid message type in handshake queue")
}
}()
}
}
func (peer *Peer) RoutineSequentialReceiver() {
var elem *QueueInboundElement
device := peer.device
logDebug := device.log.Debug
logDebug.Println("Routine, sequential receiver, started for peer", peer.id)
for {
// wait for decryption
select {
case <-peer.signal.stop:
return
case elem = <-peer.queue.inbound:
}
elem.mutex.Lock()
// check if dropped
logDebug.Println("MESSSAGE:", elem)
state := atomic.LoadUint32(&elem.state)
if state != ElementStateOkay {
continue
}
// check for replay
2017-07-02 15:28:38 +02:00
// strip padding
2017-07-01 23:29:22 +02:00
// check for keep-alive
if len(elem.packet) == 0 {
continue
}
// insert into inbound TUN queue
device.queue.inbound <- elem.packet
}
}
func (device *Device) RoutineWriteToTUN(tun TUNDevice) {
for {
var packet []byte
select {
case <-device.signal.stop:
case packet = <-device.queue.inbound:
}
size, err := tun.Write(packet)
device.log.Debug.Println("DEBUG:", size, err)
if err != nil {
}
}
}