schnutibox/vendor/github.com/jhump/protoreflect/desc/protoparse/parser.go
Marvin Steadfast ae35d9ab41
Some checks failed
continuous-integration/drone/push Build is failing
uses buf for compiling proto files and implements the server service
2021-05-05 11:14:17 +02:00

923 lines
30 KiB
Go

package protoparse
import (
"bytes"
"errors"
"fmt"
"io"
"io/ioutil"
"math"
"os"
"path/filepath"
"sort"
"strings"
"github.com/golang/protobuf/proto"
dpb "github.com/golang/protobuf/protoc-gen-go/descriptor"
"github.com/jhump/protoreflect/desc"
"github.com/jhump/protoreflect/desc/internal"
"github.com/jhump/protoreflect/desc/protoparse/ast"
)
//go:generate goyacc -o proto.y.go -p proto proto.y
func init() {
protoErrorVerbose = true
// fix up the generated "token name" array so that error messages are nicer
setTokenName(_STRING_LIT, "string literal")
setTokenName(_INT_LIT, "int literal")
setTokenName(_FLOAT_LIT, "float literal")
setTokenName(_NAME, "identifier")
setTokenName(_ERROR, "error")
// for keywords, just show the keyword itself wrapped in quotes
for str, i := range keywords {
setTokenName(i, fmt.Sprintf(`"%s"`, str))
}
}
func setTokenName(token int, text string) {
// NB: this is based on logic in generated parse code that translates the
// int returned from the lexer into an internal token number.
var intern int
if token < len(protoTok1) {
intern = protoTok1[token]
} else {
if token >= protoPrivate {
if token < protoPrivate+len(protoTok2) {
intern = protoTok2[token-protoPrivate]
}
}
if intern == 0 {
for i := 0; i+1 < len(protoTok3); i += 2 {
if protoTok3[i] == token {
intern = protoTok3[i+1]
break
}
}
}
}
if intern >= 1 && intern-1 < len(protoToknames) {
protoToknames[intern-1] = text
return
}
panic(fmt.Sprintf("Unknown token value: %d", token))
}
// FileAccessor is an abstraction for opening proto source files. It takes the
// name of the file to open and returns either the input reader or an error.
type FileAccessor func(filename string) (io.ReadCloser, error)
// FileContentsFromMap returns a FileAccessor that uses the given map of file
// contents. This allows proto source files to be constructed in memory and
// easily supplied to a parser. The map keys are the paths to the proto source
// files, and the values are the actual proto source contents.
func FileContentsFromMap(files map[string]string) FileAccessor {
return func(filename string) (io.ReadCloser, error) {
contents, ok := files[filename]
if !ok {
return nil, os.ErrNotExist
}
return ioutil.NopCloser(strings.NewReader(contents)), nil
}
}
// Parser parses proto source into descriptors.
type Parser struct {
// The paths used to search for dependencies that are referenced in import
// statements in proto source files. If no import paths are provided then
// "." (current directory) is assumed to be the only import path.
//
// This setting is only used during ParseFiles operations. Since calls to
// ParseFilesButDoNotLink do not link, there is no need to load and parse
// dependencies.
ImportPaths []string
// If true, the supplied file names/paths need not necessarily match how the
// files are referenced in import statements. The parser will attempt to
// match import statements to supplied paths, "guessing" the import paths
// for the files. Note that this inference is not perfect and link errors
// could result. It works best when all proto files are organized such that
// a single import path can be inferred (e.g. all files under a single tree
// with import statements all being relative to the root of this tree).
InferImportPaths bool
// LookupImport is a function that accepts a filename and
// returns a file descriptor, which will be consulted when resolving imports.
// This allows a compiled Go proto in another Go module to be referenced
// in the proto(s) being parsed.
//
// In the event of a filename collision, Accessor is consulted first,
// then LookupImport is consulted, and finally the well-known protos
// are used.
//
// For example, in order to automatically look up compiled Go protos that
// have been imported and be able to use them as imports, set this to
// desc.LoadFileDescriptor.
LookupImport func(string) (*desc.FileDescriptor, error)
// LookupImportProto has the same functionality as LookupImport, however it returns
// a FileDescriptorProto instead of a FileDescriptor.
//
// It is an error to set both LookupImport and LookupImportProto.
LookupImportProto func(string) (*dpb.FileDescriptorProto, error)
// Used to create a reader for a given filename, when loading proto source
// file contents. If unset, os.Open is used. If ImportPaths is also empty
// then relative paths are will be relative to the process's current working
// directory.
Accessor FileAccessor
// If true, the resulting file descriptors will retain source code info,
// that maps elements to their location in the source files as well as
// includes comments found during parsing (and attributed to elements of
// the source file).
IncludeSourceCodeInfo bool
// If true, the results from ParseFilesButDoNotLink will be passed through
// some additional validations. But only constraints that do not require
// linking can be checked. These include proto2 vs. proto3 language features,
// looking for incorrect usage of reserved names or tags, and ensuring that
// fields have unique tags and that enum values have unique numbers (unless
// the enum allows aliases).
ValidateUnlinkedFiles bool
// If true, the results from ParseFilesButDoNotLink will have options
// interpreted. Any uninterpretable options (including any custom options or
// options that refer to message and enum types, which can only be
// interpreted after linking) will be left in uninterpreted_options. Also,
// the "default" pseudo-option for fields can only be interpreted for scalar
// fields, excluding enums. (Interpreting default values for enum fields
// requires resolving enum names, which requires linking.)
InterpretOptionsInUnlinkedFiles bool
// A custom reporter of syntax and link errors. If not specified, the
// default reporter just returns the reported error, which causes parsing
// to abort after encountering a single error.
//
// The reporter is not invoked for system or I/O errors, only for syntax and
// link errors.
ErrorReporter ErrorReporter
// A custom reporter of warnings. If not specified, warning messages are ignored.
WarningReporter WarningReporter
}
// ParseFiles parses the named files into descriptors. The returned slice has
// the same number of entries as the give filenames, in the same order. So the
// first returned descriptor corresponds to the first given name, and so on.
//
// All dependencies for all specified files (including transitive dependencies)
// must be accessible via the parser's Accessor or a link error will occur. The
// exception to this rule is that files can import standard Google-provided
// files -- e.g. google/protobuf/*.proto -- without needing to supply sources
// for these files. Like protoc, this parser has a built-in version of these
// files it can use if they aren't explicitly supplied.
//
// If the Parser has no ErrorReporter set and a syntax or link error occurs,
// parsing will abort with the first such error encountered. If there is an
// ErrorReporter configured and it returns non-nil, parsing will abort with the
// error it returns. If syntax or link errors are encountered but the configured
// ErrorReporter always returns nil, the parse fails with ErrInvalidSource.
func (p Parser) ParseFiles(filenames ...string) ([]*desc.FileDescriptor, error) {
accessor := p.Accessor
if accessor == nil {
accessor = func(name string) (io.ReadCloser, error) {
return os.Open(name)
}
}
paths := p.ImportPaths
if len(paths) > 0 {
acc := accessor
accessor = func(name string) (io.ReadCloser, error) {
var ret error
for _, path := range paths {
f, err := acc(filepath.Join(path, name))
if err != nil {
if ret == nil {
ret = err
}
continue
}
return f, nil
}
return nil, ret
}
}
lookupImport, err := p.getLookupImport()
if err != nil {
return nil, err
}
protos := map[string]*parseResult{}
results := &parseResults{
resultsByFilename: protos,
recursive: true,
validate: true,
createDescriptorProtos: true,
}
errs := newErrorHandler(p.ErrorReporter, p.WarningReporter)
parseProtoFiles(accessor, filenames, errs, results, lookupImport)
if err := errs.getError(); err != nil {
return nil, err
}
if p.InferImportPaths {
// TODO: if this re-writes one of the names in filenames, lookups below will break
protos = fixupFilenames(protos)
}
linkedProtos, err := newLinker(results, errs).linkFiles()
if err != nil {
return nil, err
}
if p.IncludeSourceCodeInfo {
for name, fd := range linkedProtos {
pr := protos[name]
fd.AsFileDescriptorProto().SourceCodeInfo = pr.generateSourceCodeInfo()
internal.RecomputeSourceInfo(fd)
}
}
fds := make([]*desc.FileDescriptor, len(filenames))
for i, name := range filenames {
fd := linkedProtos[name]
fds[i] = fd
}
return fds, nil
}
// ParseFilesButDoNotLink parses the named files into descriptor protos. The
// results are just protos, not fully-linked descriptors. It is possible that
// descriptors are invalid and still be returned in parsed form without error
// due to the fact that the linking step is skipped (and thus many validation
// steps omitted).
//
// There are a few side effects to not linking the descriptors:
// 1. No options will be interpreted. Options can refer to extensions or have
// message and enum types. Without linking, these extension and type
// references are not resolved, so the options may not be interpretable.
// So all options will appear in UninterpretedOption fields of the various
// descriptor options messages.
// 2. Type references will not be resolved. This means that the actual type
// names in the descriptors may be unqualified and even relative to the
// scope in which the type reference appears. This goes for fields that
// have message and enum types. It also applies to methods and their
// references to request and response message types.
// 3. Type references are not known. For non-scalar fields, until the type
// name is resolved (during linking), it is not known whether the type
// refers to a message or an enum. So all fields with such type references
// will not have their Type set, only the TypeName.
//
// This method will still validate the syntax of parsed files. If the parser's
// ValidateUnlinkedFiles field is true, additional checks, beyond syntax will
// also be performed.
//
// If the Parser has no ErrorReporter set and a syntax error occurs, parsing
// will abort with the first such error encountered. If there is an
// ErrorReporter configured and it returns non-nil, parsing will abort with the
// error it returns. If syntax errors are encountered but the configured
// ErrorReporter always returns nil, the parse fails with ErrInvalidSource.
func (p Parser) ParseFilesButDoNotLink(filenames ...string) ([]*dpb.FileDescriptorProto, error) {
accessor := p.Accessor
if accessor == nil {
accessor = func(name string) (io.ReadCloser, error) {
return os.Open(name)
}
}
lookupImport, err := p.getLookupImport()
if err != nil {
return nil, err
}
protos := map[string]*parseResult{}
errs := newErrorHandler(p.ErrorReporter, p.WarningReporter)
results := &parseResults{
resultsByFilename: protos,
validate: p.ValidateUnlinkedFiles,
createDescriptorProtos: true,
}
parseProtoFiles(accessor, filenames, errs, results, lookupImport)
if err := errs.getError(); err != nil {
return nil, err
}
if p.InferImportPaths {
// TODO: if this re-writes one of the names in filenames, lookups below will break
protos = fixupFilenames(protos)
}
fds := make([]*dpb.FileDescriptorProto, len(filenames))
for i, name := range filenames {
pr := protos[name]
fd := pr.fd
if p.InterpretOptionsInUnlinkedFiles {
// parsing options will be best effort
pr.lenient = true
// we don't want the real error reporter see any errors
pr.errs.errReporter = func(err ErrorWithPos) error {
return err
}
_ = interpretFileOptions(pr, poorFileDescriptorish{FileDescriptorProto: fd})
}
if p.IncludeSourceCodeInfo {
fd.SourceCodeInfo = pr.generateSourceCodeInfo()
}
fds[i] = fd
}
return fds, nil
}
// ParseToAST parses the named files into ASTs, or Abstract Syntax Trees. This
// is for consumers of proto files that don't care about compiling the files to
// descriptors, but care deeply about a non-lossy structured representation of
// the source (since descriptors are lossy). This includes formatting tools and
// possibly linters, too.
//
// If the requested filenames include standard imports (such as
// "google/protobuf/empty.proto") and no source is provided, the corresponding
// AST in the returned slice will be nil. These standard imports are only
// available for use as descriptors; no source is available unless it is
// provided by the configured Accessor.
//
// If the Parser has no ErrorReporter set and a syntax error occurs, parsing
// will abort with the first such error encountered. If there is an
// ErrorReporter configured and it returns non-nil, parsing will abort with the
// error it returns. If syntax errors are encountered but the configured
// ErrorReporter always returns nil, the parse fails with ErrInvalidSource.
func (p Parser) ParseToAST(filenames ...string) ([]*ast.FileNode, error) {
accessor := p.Accessor
if accessor == nil {
accessor = func(name string) (io.ReadCloser, error) {
return os.Open(name)
}
}
lookupImport, err := p.getLookupImport()
if err != nil {
return nil, err
}
protos := map[string]*parseResult{}
errs := newErrorHandler(p.ErrorReporter, p.WarningReporter)
parseProtoFiles(accessor, filenames, errs, &parseResults{resultsByFilename: protos}, lookupImport)
if err := errs.getError(); err != nil {
return nil, err
}
ret := make([]*ast.FileNode, 0, len(filenames))
for _, name := range filenames {
ret = append(ret, protos[name].root)
}
return ret, nil
}
func (p Parser) getLookupImport() (func(string) (*dpb.FileDescriptorProto, error), error) {
if p.LookupImport != nil && p.LookupImportProto != nil {
return nil, ErrLookupImportAndProtoSet
}
if p.LookupImportProto != nil {
return p.LookupImportProto, nil
}
if p.LookupImport != nil {
return func(path string) (*dpb.FileDescriptorProto, error) {
value, err := p.LookupImport(path)
if value != nil {
return value.AsFileDescriptorProto(), err
}
return nil, err
}, nil
}
return nil, nil
}
func fixupFilenames(protos map[string]*parseResult) map[string]*parseResult {
// In the event that the given filenames (keys in the supplied map) do not
// match the actual paths used in 'import' statements in the files, we try
// to revise names in the protos so that they will match and be linkable.
revisedProtos := map[string]*parseResult{}
protoPaths := map[string]struct{}{}
// TODO: this is O(n^2) but could likely be O(n) with a clever data structure (prefix tree that is indexed backwards?)
importCandidates := map[string]map[string]struct{}{}
candidatesAvailable := map[string]struct{}{}
for name := range protos {
candidatesAvailable[name] = struct{}{}
for _, f := range protos {
for _, imp := range f.fd.Dependency {
if strings.HasSuffix(name, imp) {
candidates := importCandidates[imp]
if candidates == nil {
candidates = map[string]struct{}{}
importCandidates[imp] = candidates
}
candidates[name] = struct{}{}
}
}
}
}
for imp, candidates := range importCandidates {
// if we found multiple possible candidates, use the one that is an exact match
// if it exists, and otherwise, guess that it's the shortest path (fewest elements)
var best string
for c := range candidates {
if _, ok := candidatesAvailable[c]; !ok {
// already used this candidate and re-written its filename accordingly
continue
}
if c == imp {
// exact match!
best = c
break
}
if best == "" {
best = c
} else {
// HACK: we can't actually tell which files is supposed to match
// this import, so arbitrarily pick the "shorter" one (fewest
// path elements) or, on a tie, the lexically earlier one
minLen := strings.Count(best, string(filepath.Separator))
cLen := strings.Count(c, string(filepath.Separator))
if cLen < minLen || (cLen == minLen && c < best) {
best = c
}
}
}
if best != "" {
prefix := best[:len(best)-len(imp)]
if len(prefix) > 0 {
protoPaths[prefix] = struct{}{}
}
f := protos[best]
f.fd.Name = proto.String(imp)
revisedProtos[imp] = f
delete(candidatesAvailable, best)
}
}
if len(candidatesAvailable) == 0 {
return revisedProtos
}
if len(protoPaths) == 0 {
for c := range candidatesAvailable {
revisedProtos[c] = protos[c]
}
return revisedProtos
}
// Any remaining candidates are entry-points (not imported by others), so
// the best bet to "fixing" their file name is to see if they're in one of
// the proto paths we found, and if so strip that prefix.
protoPathStrs := make([]string, len(protoPaths))
i := 0
for p := range protoPaths {
protoPathStrs[i] = p
i++
}
sort.Strings(protoPathStrs)
// we look at paths in reverse order, so we'll use a longer proto path if
// there is more than one match
for c := range candidatesAvailable {
var imp string
for i := len(protoPathStrs) - 1; i >= 0; i-- {
p := protoPathStrs[i]
if strings.HasPrefix(c, p) {
imp = c[len(p):]
break
}
}
if imp != "" {
f := protos[c]
f.fd.Name = proto.String(imp)
revisedProtos[imp] = f
} else {
revisedProtos[c] = protos[c]
}
}
return revisedProtos
}
func parseProtoFiles(acc FileAccessor, filenames []string, errs *errorHandler, parsed *parseResults, lookupImport func(string) (*dpb.FileDescriptorProto, error)) {
for _, name := range filenames {
parseProtoFile(acc, name, nil, errs, parsed, lookupImport)
if errs.err != nil {
return
}
}
}
func parseProtoFile(acc FileAccessor, filename string, importLoc *SourcePos, errs *errorHandler, results *parseResults, lookupImport func(string) (*dpb.FileDescriptorProto, error)) {
if results.has(filename) {
return
}
if lookupImport == nil {
lookupImport = func(string) (*dpb.FileDescriptorProto, error) {
return nil, errors.New("no import lookup function")
}
}
in, err := acc(filename)
var result *parseResult
if err == nil {
// try to parse the bytes accessed
func() {
defer func() {
// if we've already parsed contents, an error
// closing need not fail this operation
_ = in.Close()
}()
result = parseProto(filename, in, errs, results.validate, results.createDescriptorProtos)
}()
} else if d, lookupErr := lookupImport(filename); lookupErr == nil {
// This is a user-provided descriptor, which is acting similarly to a
// well-known import.
result = &parseResult{fd: proto.Clone(d).(*dpb.FileDescriptorProto)}
} else if d, ok := standardImports[filename]; ok {
// it's a well-known import
// (we clone it to make sure we're not sharing state with other
// parsers, which could result in unsafe races if multiple
// parsers are trying to access it concurrently)
result = &parseResult{fd: proto.Clone(d).(*dpb.FileDescriptorProto)}
} else {
if !strings.Contains(err.Error(), filename) {
// an error message that doesn't indicate the file is awful!
// this cannot be %w as this is not compatible with go <= 1.13
err = errorWithFilename{
underlying: err,
filename: filename,
}
}
// The top-level loop in parseProtoFiles calls this with nil for the top-level files
// importLoc is only for imports, otherwise we do not want to return a ErrorWithSourcePos
// ErrorWithSourcePos should always have a non-nil SourcePos
if importLoc != nil {
// associate the error with the import line
err = ErrorWithSourcePos{
Pos: importLoc,
Underlying: err,
}
}
_ = errs.handleError(err)
return
}
results.add(filename, result)
if errs.err != nil {
return // abort
}
if results.recursive {
fd := result.fd
decl := result.getFileNode(fd)
fnode, ok := decl.(*ast.FileNode)
if !ok {
// no AST for this file? use imports in descriptor
for _, dep := range fd.Dependency {
parseProtoFile(acc, dep, decl.Start(), errs, results, lookupImport)
if errs.getError() != nil {
return // abort
}
}
return
}
// we have an AST; use it so we can report import location in errors
for _, decl := range fnode.Decls {
if dep, ok := decl.(*ast.ImportNode); ok {
parseProtoFile(acc, dep.Name.AsString(), dep.Name.Start(), errs, results, lookupImport)
if errs.getError() != nil {
return // abort
}
}
}
}
}
type parseResults struct {
resultsByFilename map[string]*parseResult
filenames []string
recursive, validate, createDescriptorProtos bool
}
func (r *parseResults) has(filename string) bool {
_, ok := r.resultsByFilename[filename]
return ok
}
func (r *parseResults) add(filename string, result *parseResult) {
r.resultsByFilename[filename] = result
r.filenames = append(r.filenames, filename)
}
type parseResult struct {
// handles any errors encountered during parsing, construction of file descriptor,
// or validation
errs *errorHandler
// the root of the AST
root *ast.FileNode
// the parsed file descriptor
fd *dpb.FileDescriptorProto
// if set to true, enables lenient interpretation of options, where
// unrecognized options will be left uninterpreted instead of resulting in a
// link error
lenient bool
// a map of elements in the descriptor to nodes in the AST
// (for extracting position information when validating the descriptor)
nodes map[proto.Message]ast.Node
// a map of uninterpreted option AST nodes to their relative path
// in the resulting options message
interpretedOptions map[*ast.OptionNode][]int32
}
func (r *parseResult) getFileNode(f *dpb.FileDescriptorProto) ast.FileDeclNode {
if r.nodes == nil {
return ast.NewNoSourceNode(f.GetName())
}
return r.nodes[f].(ast.FileDeclNode)
}
func (r *parseResult) getOptionNode(o *dpb.UninterpretedOption) ast.OptionDeclNode {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[o].(ast.OptionDeclNode)
}
func (r *parseResult) getOptionNamePartNode(o *dpb.UninterpretedOption_NamePart) ast.Node {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[o]
}
func (r *parseResult) getFieldNode(f *dpb.FieldDescriptorProto) ast.FieldDeclNode {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[f].(ast.FieldDeclNode)
}
func (r *parseResult) getExtensionRangeNode(e *dpb.DescriptorProto_ExtensionRange) ast.RangeDeclNode {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[e].(ast.RangeDeclNode)
}
func (r *parseResult) getMessageReservedRangeNode(rr *dpb.DescriptorProto_ReservedRange) ast.RangeDeclNode {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[rr].(ast.RangeDeclNode)
}
func (r *parseResult) getEnumNode(e *dpb.EnumDescriptorProto) ast.Node {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[e]
}
func (r *parseResult) getEnumValueNode(e *dpb.EnumValueDescriptorProto) ast.EnumValueDeclNode {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[e].(ast.EnumValueDeclNode)
}
func (r *parseResult) getEnumReservedRangeNode(rr *dpb.EnumDescriptorProto_EnumReservedRange) ast.RangeDeclNode {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[rr].(ast.RangeDeclNode)
}
func (r *parseResult) getMethodNode(m *dpb.MethodDescriptorProto) ast.RPCDeclNode {
if r.nodes == nil {
return ast.NewNoSourceNode(r.fd.GetName())
}
return r.nodes[m].(ast.RPCDeclNode)
}
func (r *parseResult) putFileNode(f *dpb.FileDescriptorProto, n *ast.FileNode) {
r.nodes[f] = n
}
func (r *parseResult) putOptionNode(o *dpb.UninterpretedOption, n *ast.OptionNode) {
r.nodes[o] = n
}
func (r *parseResult) putOptionNamePartNode(o *dpb.UninterpretedOption_NamePart, n *ast.FieldReferenceNode) {
r.nodes[o] = n
}
func (r *parseResult) putMessageNode(m *dpb.DescriptorProto, n ast.MessageDeclNode) {
r.nodes[m] = n
}
func (r *parseResult) putFieldNode(f *dpb.FieldDescriptorProto, n ast.FieldDeclNode) {
r.nodes[f] = n
}
func (r *parseResult) putOneOfNode(o *dpb.OneofDescriptorProto, n *ast.OneOfNode) {
r.nodes[o] = n
}
func (r *parseResult) putExtensionRangeNode(e *dpb.DescriptorProto_ExtensionRange, n *ast.RangeNode) {
r.nodes[e] = n
}
func (r *parseResult) putMessageReservedRangeNode(rr *dpb.DescriptorProto_ReservedRange, n *ast.RangeNode) {
r.nodes[rr] = n
}
func (r *parseResult) putEnumNode(e *dpb.EnumDescriptorProto, n *ast.EnumNode) {
r.nodes[e] = n
}
func (r *parseResult) putEnumValueNode(e *dpb.EnumValueDescriptorProto, n *ast.EnumValueNode) {
r.nodes[e] = n
}
func (r *parseResult) putEnumReservedRangeNode(rr *dpb.EnumDescriptorProto_EnumReservedRange, n *ast.RangeNode) {
r.nodes[rr] = n
}
func (r *parseResult) putServiceNode(s *dpb.ServiceDescriptorProto, n *ast.ServiceNode) {
r.nodes[s] = n
}
func (r *parseResult) putMethodNode(m *dpb.MethodDescriptorProto, n *ast.RPCNode) {
r.nodes[m] = n
}
func parseProto(filename string, r io.Reader, errs *errorHandler, validate, createProtos bool) *parseResult {
beforeErrs := errs.errsReported
lx := newLexer(r, filename, errs)
protoParse(lx)
if lx.res == nil || len(lx.res.Children()) == 0 {
// nil AST means there was an error that prevented any parsing
// or the file was empty; synthesize empty non-nil AST
lx.res = ast.NewEmptyFileNode(filename)
}
if lx.eof != nil {
lx.res.FinalComments = lx.eof.LeadingComments()
lx.res.FinalWhitespace = lx.eof.LeadingWhitespace()
}
res := createParseResult(filename, lx.res, errs, createProtos)
if validate && errs.err == nil {
validateBasic(res, errs.errsReported > beforeErrs)
}
return res
}
func createParseResult(filename string, file *ast.FileNode, errs *errorHandler, createProtos bool) *parseResult {
res := &parseResult{
errs: errs,
root: file,
nodes: map[proto.Message]ast.Node{},
interpretedOptions: map[*ast.OptionNode][]int32{},
}
if createProtos {
res.createFileDescriptor(filename, file)
}
return res
}
func checkTag(pos *SourcePos, v uint64, maxTag int32) error {
if v < 1 {
return errorWithPos(pos, "tag number %d must be greater than zero", v)
} else if v > uint64(maxTag) {
return errorWithPos(pos, "tag number %d is higher than max allowed tag number (%d)", v, maxTag)
} else if v >= internal.SpecialReservedStart && v <= internal.SpecialReservedEnd {
return errorWithPos(pos, "tag number %d is in disallowed reserved range %d-%d", v, internal.SpecialReservedStart, internal.SpecialReservedEnd)
}
return nil
}
func checkExtensionTagsInFile(fd *desc.FileDescriptor, res *parseResult) error {
for _, fld := range fd.GetExtensions() {
if err := checkExtensionTag(fld, res); err != nil {
return err
}
}
for _, md := range fd.GetMessageTypes() {
if err := checkExtensionTagsInMessage(md, res); err != nil {
return err
}
}
return nil
}
func checkExtensionTagsInMessage(md *desc.MessageDescriptor, res *parseResult) error {
for _, fld := range md.GetNestedExtensions() {
if err := checkExtensionTag(fld, res); err != nil {
return err
}
}
for _, nmd := range md.GetNestedMessageTypes() {
if err := checkExtensionTagsInMessage(nmd, res); err != nil {
return err
}
}
return nil
}
func checkExtensionTag(fld *desc.FieldDescriptor, res *parseResult) error {
// NB: This is kind of gross that we don't enforce this in validateBasic(). But it would
// require doing some minimal linking there (to identify the extendee and locate its
// descriptor). To keep the code simpler, we just wait until things are fully linked.
// In validateBasic() we just made sure these were within bounds for any message. But
// now that things are linked, we can check if the extendee is messageset wire format
// and, if not, enforce tighter limit.
if !fld.GetOwner().GetMessageOptions().GetMessageSetWireFormat() && fld.GetNumber() > internal.MaxNormalTag {
pos := res.getFieldNode(fld.AsFieldDescriptorProto()).FieldTag().Start()
return errorWithPos(pos, "tag number %d is higher than max allowed tag number (%d)", fld.GetNumber(), internal.MaxNormalTag)
}
return nil
}
func aggToString(agg []*ast.MessageFieldNode, buf *bytes.Buffer) {
buf.WriteString("{")
for _, a := range agg {
buf.WriteString(" ")
buf.WriteString(a.Name.Value())
if v, ok := a.Val.(*ast.MessageLiteralNode); ok {
aggToString(v.Elements, buf)
} else {
buf.WriteString(": ")
elementToString(a.Val.Value(), buf)
}
}
buf.WriteString(" }")
}
func elementToString(v interface{}, buf *bytes.Buffer) {
switch v := v.(type) {
case bool, int64, uint64, ast.Identifier:
_, _ = fmt.Fprintf(buf, "%v", v)
case float64:
if math.IsInf(v, 1) {
buf.WriteString(": inf")
} else if math.IsInf(v, -1) {
buf.WriteString(": -inf")
} else if math.IsNaN(v) {
buf.WriteString(": nan")
} else {
_, _ = fmt.Fprintf(buf, ": %v", v)
}
case string:
buf.WriteRune('"')
writeEscapedBytes(buf, []byte(v))
buf.WriteRune('"')
case []ast.ValueNode:
buf.WriteString(": [")
first := true
for _, e := range v {
if first {
first = false
} else {
buf.WriteString(", ")
}
elementToString(e.Value(), buf)
}
buf.WriteString("]")
case []*ast.MessageFieldNode:
aggToString(v, buf)
}
}
func writeEscapedBytes(buf *bytes.Buffer, b []byte) {
for _, c := range b {
switch c {
case '\n':
buf.WriteString("\\n")
case '\r':
buf.WriteString("\\r")
case '\t':
buf.WriteString("\\t")
case '"':
buf.WriteString("\\\"")
case '\'':
buf.WriteString("\\'")
case '\\':
buf.WriteString("\\\\")
default:
if c >= 0x20 && c <= 0x7f && c != '"' && c != '\\' {
// simple printable characters
buf.WriteByte(c)
} else {
// use octal escape for all other values
buf.WriteRune('\\')
buf.WriteByte('0' + ((c >> 6) & 0x7))
buf.WriteByte('0' + ((c >> 3) & 0x7))
buf.WriteByte('0' + (c & 0x7))
}
}
}
}