package dynamic // JSON marshalling and unmarshalling for dynamic messages import ( "bytes" "encoding/base64" "encoding/json" "fmt" "io" "io/ioutil" "math" "reflect" "sort" "strconv" "strings" "github.com/golang/protobuf/jsonpb" "github.com/golang/protobuf/proto" "github.com/golang/protobuf/protoc-gen-go/descriptor" // link in the well-known-types that have a special JSON format _ "github.com/golang/protobuf/ptypes/any" _ "github.com/golang/protobuf/ptypes/duration" _ "github.com/golang/protobuf/ptypes/empty" _ "github.com/golang/protobuf/ptypes/struct" _ "github.com/golang/protobuf/ptypes/timestamp" _ "github.com/golang/protobuf/ptypes/wrappers" "github.com/jhump/protoreflect/desc" ) var wellKnownTypeNames = map[string]struct{}{ "google.protobuf.Any": {}, "google.protobuf.Empty": {}, "google.protobuf.Duration": {}, "google.protobuf.Timestamp": {}, // struct.proto "google.protobuf.Struct": {}, "google.protobuf.Value": {}, "google.protobuf.ListValue": {}, // wrappers.proto "google.protobuf.DoubleValue": {}, "google.protobuf.FloatValue": {}, "google.protobuf.Int64Value": {}, "google.protobuf.UInt64Value": {}, "google.protobuf.Int32Value": {}, "google.protobuf.UInt32Value": {}, "google.protobuf.BoolValue": {}, "google.protobuf.StringValue": {}, "google.protobuf.BytesValue": {}, } // MarshalJSON serializes this message to bytes in JSON format, returning an // error if the operation fails. The resulting bytes will be a valid UTF8 // string. // // This method uses a compact form: no newlines, and spaces between fields and // between field identifiers and values are elided. // // This method is convenient shorthand for invoking MarshalJSONPB with a default // (zero value) marshaler: // // m.MarshalJSONPB(&jsonpb.Marshaler{}) // // So enums are serialized using enum value name strings, and values that are // not present (including those with default/zero value for messages defined in // "proto3" syntax) are omitted. func (m *Message) MarshalJSON() ([]byte, error) { return m.MarshalJSONPB(&jsonpb.Marshaler{}) } // MarshalJSONIndent serializes this message to bytes in JSON format, returning // an error if the operation fails. The resulting bytes will be a valid UTF8 // string. // // This method uses a "pretty-printed" form, with each field on its own line and // spaces between field identifiers and values. Indentation of two spaces is // used. // // This method is convenient shorthand for invoking MarshalJSONPB with a default // (zero value) marshaler: // // m.MarshalJSONPB(&jsonpb.Marshaler{Indent: " "}) // // So enums are serialized using enum value name strings, and values that are // not present (including those with default/zero value for messages defined in // "proto3" syntax) are omitted. func (m *Message) MarshalJSONIndent() ([]byte, error) { return m.MarshalJSONPB(&jsonpb.Marshaler{Indent: " "}) } // MarshalJSONPB serializes this message to bytes in JSON format, returning an // error if the operation fails. The resulting bytes will be a valid UTF8 // string. The given marshaler is used to convey options used during marshaling. // // If this message contains nested messages that are generated message types (as // opposed to dynamic messages), the given marshaler is used to marshal it. // // When marshaling any nested messages, any jsonpb.AnyResolver configured in the // given marshaler is augmented with knowledge of message types known to this // message's descriptor (and its enclosing file and set of transitive // dependencies). func (m *Message) MarshalJSONPB(opts *jsonpb.Marshaler) ([]byte, error) { var b indentBuffer b.indent = opts.Indent if len(opts.Indent) == 0 { b.indentCount = -1 } b.comma = true if err := m.marshalJSON(&b, opts); err != nil { return nil, err } return b.Bytes(), nil } func (m *Message) marshalJSON(b *indentBuffer, opts *jsonpb.Marshaler) error { if m == nil { _, err := b.WriteString("null") return err } if r, changed := wrapResolver(opts.AnyResolver, m.mf, m.md.GetFile()); changed { newOpts := *opts newOpts.AnyResolver = r opts = &newOpts } if ok, err := marshalWellKnownType(m, b, opts); ok { return err } err := b.WriteByte('{') if err != nil { return err } err = b.start() if err != nil { return err } var tags []int if opts.EmitDefaults { tags = m.allKnownFieldTags() } else { tags = m.knownFieldTags() } first := true for _, tag := range tags { itag := int32(tag) fd := m.FindFieldDescriptor(itag) v, ok := m.values[itag] if !ok { if fd.GetOneOf() != nil { // don't print defaults for fields in a oneof continue } v = fd.GetDefaultValue() } err := b.maybeNext(&first) if err != nil { return err } err = marshalKnownFieldJSON(b, fd, v, opts) if err != nil { return err } } err = b.end() if err != nil { return err } err = b.WriteByte('}') if err != nil { return err } return nil } func marshalWellKnownType(m *Message, b *indentBuffer, opts *jsonpb.Marshaler) (bool, error) { fqn := m.md.GetFullyQualifiedName() if _, ok := wellKnownTypeNames[fqn]; !ok { return false, nil } msgType := proto.MessageType(fqn) if msgType == nil { // wtf? panic(fmt.Sprintf("could not find registered message type for %q", fqn)) } // convert dynamic message to well-known type and let jsonpb marshal it msg := reflect.New(msgType.Elem()).Interface().(proto.Message) if err := m.MergeInto(msg); err != nil { return true, err } return true, opts.Marshal(b, msg) } func marshalKnownFieldJSON(b *indentBuffer, fd *desc.FieldDescriptor, v interface{}, opts *jsonpb.Marshaler) error { var jsonName string if opts.OrigName { jsonName = fd.GetName() } else { jsonName = fd.AsFieldDescriptorProto().GetJsonName() if jsonName == "" { jsonName = fd.GetName() } } if fd.IsExtension() { var scope string switch parent := fd.GetParent().(type) { case *desc.FileDescriptor: scope = parent.GetPackage() default: scope = parent.GetFullyQualifiedName() } if scope == "" { jsonName = fmt.Sprintf("[%s]", jsonName) } else { jsonName = fmt.Sprintf("[%s.%s]", scope, jsonName) } } err := writeJsonString(b, jsonName) if err != nil { return err } err = b.sep() if err != nil { return err } if isNil(v) { _, err := b.WriteString("null") return err } if fd.IsMap() { err = b.WriteByte('{') if err != nil { return err } err = b.start() if err != nil { return err } md := fd.GetMessageType() vfd := md.FindFieldByNumber(2) mp := v.(map[interface{}]interface{}) keys := make([]interface{}, 0, len(mp)) for k := range mp { keys = append(keys, k) } sort.Sort(sortable(keys)) first := true for _, mk := range keys { mv := mp[mk] err := b.maybeNext(&first) if err != nil { return err } err = marshalKnownFieldMapEntryJSON(b, mk, vfd, mv, opts) if err != nil { return err } } err = b.end() if err != nil { return err } return b.WriteByte('}') } else if fd.IsRepeated() { err = b.WriteByte('[') if err != nil { return err } err = b.start() if err != nil { return err } sl := v.([]interface{}) first := true for _, slv := range sl { err := b.maybeNext(&first) if err != nil { return err } err = marshalKnownFieldValueJSON(b, fd, slv, opts) if err != nil { return err } } err = b.end() if err != nil { return err } return b.WriteByte(']') } else { return marshalKnownFieldValueJSON(b, fd, v, opts) } } // sortable is used to sort map keys. Values will be integers (int32, int64, uint32, and uint64), // bools, or strings. type sortable []interface{} func (s sortable) Len() int { return len(s) } func (s sortable) Less(i, j int) bool { vi := s[i] vj := s[j] switch reflect.TypeOf(vi).Kind() { case reflect.Int32: return vi.(int32) < vj.(int32) case reflect.Int64: return vi.(int64) < vj.(int64) case reflect.Uint32: return vi.(uint32) < vj.(uint32) case reflect.Uint64: return vi.(uint64) < vj.(uint64) case reflect.String: return vi.(string) < vj.(string) case reflect.Bool: return !vi.(bool) && vj.(bool) default: panic(fmt.Sprintf("cannot compare keys of type %v", reflect.TypeOf(vi))) } } func (s sortable) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func isNil(v interface{}) bool { if v == nil { return true } rv := reflect.ValueOf(v) return rv.Kind() == reflect.Ptr && rv.IsNil() } func marshalKnownFieldMapEntryJSON(b *indentBuffer, mk interface{}, vfd *desc.FieldDescriptor, mv interface{}, opts *jsonpb.Marshaler) error { rk := reflect.ValueOf(mk) var strkey string switch rk.Kind() { case reflect.Bool: strkey = strconv.FormatBool(rk.Bool()) case reflect.Int32, reflect.Int64: strkey = strconv.FormatInt(rk.Int(), 10) case reflect.Uint32, reflect.Uint64: strkey = strconv.FormatUint(rk.Uint(), 10) case reflect.String: strkey = rk.String() default: return fmt.Errorf("invalid map key value: %v (%v)", mk, rk.Type()) } err := writeString(b, strkey) if err != nil { return err } err = b.sep() if err != nil { return err } return marshalKnownFieldValueJSON(b, vfd, mv, opts) } func marshalKnownFieldValueJSON(b *indentBuffer, fd *desc.FieldDescriptor, v interface{}, opts *jsonpb.Marshaler) error { rv := reflect.ValueOf(v) switch rv.Kind() { case reflect.Int64: return writeJsonString(b, strconv.FormatInt(rv.Int(), 10)) case reflect.Int32: ed := fd.GetEnumType() if !opts.EnumsAsInts && ed != nil { n := int32(rv.Int()) vd := ed.FindValueByNumber(n) if vd == nil { _, err := b.WriteString(strconv.FormatInt(rv.Int(), 10)) return err } else { return writeJsonString(b, vd.GetName()) } } else { _, err := b.WriteString(strconv.FormatInt(rv.Int(), 10)) return err } case reflect.Uint64: return writeJsonString(b, strconv.FormatUint(rv.Uint(), 10)) case reflect.Uint32: _, err := b.WriteString(strconv.FormatUint(rv.Uint(), 10)) return err case reflect.Float32, reflect.Float64: f := rv.Float() var str string if math.IsNaN(f) { str = `"NaN"` } else if math.IsInf(f, 1) { str = `"Infinity"` } else if math.IsInf(f, -1) { str = `"-Infinity"` } else { var bits int if rv.Kind() == reflect.Float32 { bits = 32 } else { bits = 64 } str = strconv.FormatFloat(rv.Float(), 'g', -1, bits) } _, err := b.WriteString(str) return err case reflect.Bool: _, err := b.WriteString(strconv.FormatBool(rv.Bool())) return err case reflect.Slice: bstr := base64.StdEncoding.EncodeToString(rv.Bytes()) return writeJsonString(b, bstr) case reflect.String: return writeJsonString(b, rv.String()) default: // must be a message if isNil(v) { _, err := b.WriteString("null") return err } if dm, ok := v.(*Message); ok { return dm.marshalJSON(b, opts) } var err error if b.indentCount <= 0 || len(b.indent) == 0 { err = opts.Marshal(b, v.(proto.Message)) } else { str, err := opts.MarshalToString(v.(proto.Message)) if err != nil { return err } indent := strings.Repeat(b.indent, b.indentCount) pos := 0 // add indention prefix to each line for pos < len(str) { start := pos nextPos := strings.Index(str[pos:], "\n") if nextPos == -1 { nextPos = len(str) } else { nextPos = pos + nextPos + 1 // include newline } line := str[start:nextPos] if pos > 0 { _, err = b.WriteString(indent) if err != nil { return err } } _, err = b.WriteString(line) if err != nil { return err } pos = nextPos } } return err } } func writeJsonString(b *indentBuffer, s string) error { if sbytes, err := json.Marshal(s); err != nil { return err } else { _, err := b.Write(sbytes) return err } } // UnmarshalJSON de-serializes the message that is present, in JSON format, in // the given bytes into this message. It first resets the current message. It // returns an error if the given bytes do not contain a valid encoding of this // message type in JSON format. // // This method is shorthand for invoking UnmarshalJSONPB with a default (zero // value) unmarshaler: // // m.UnmarshalMergeJSONPB(&jsonpb.Unmarshaler{}, js) // // So unknown fields will result in an error, and no provided jsonpb.AnyResolver // will be used when parsing google.protobuf.Any messages. func (m *Message) UnmarshalJSON(js []byte) error { return m.UnmarshalJSONPB(&jsonpb.Unmarshaler{}, js) } // UnmarshalMergeJSON de-serializes the message that is present, in JSON format, // in the given bytes into this message. Unlike UnmarshalJSON, it does not first // reset the message, instead merging the data in the given bytes into the // existing data in this message. func (m *Message) UnmarshalMergeJSON(js []byte) error { return m.UnmarshalMergeJSONPB(&jsonpb.Unmarshaler{}, js) } // UnmarshalJSONPB de-serializes the message that is present, in JSON format, in // the given bytes into this message. The given unmarshaler conveys options used // when parsing the JSON. This function first resets the current message. It // returns an error if the given bytes do not contain a valid encoding of this // message type in JSON format. // // The decoding is lenient: // 1. The JSON can refer to fields either by their JSON name or by their // declared name. // 2. The JSON can use either numeric values or string names for enum values. // // When instantiating nested messages, if this message's associated factory // returns a generated message type (as opposed to a dynamic message), the given // unmarshaler is used to unmarshal it. // // When unmarshaling any nested messages, any jsonpb.AnyResolver configured in // the given unmarshaler is augmented with knowledge of message types known to // this message's descriptor (and its enclosing file and set of transitive // dependencies). func (m *Message) UnmarshalJSONPB(opts *jsonpb.Unmarshaler, js []byte) error { m.Reset() if err := m.UnmarshalMergeJSONPB(opts, js); err != nil { return err } return m.Validate() } // UnmarshalMergeJSONPB de-serializes the message that is present, in JSON // format, in the given bytes into this message. The given unmarshaler conveys // options used when parsing the JSON. Unlike UnmarshalJSONPB, it does not first // reset the message, instead merging the data in the given bytes into the // existing data in this message. func (m *Message) UnmarshalMergeJSONPB(opts *jsonpb.Unmarshaler, js []byte) error { r := newJsReader(js) err := m.unmarshalJson(r, opts) if err != nil { return err } if t, err := r.poll(); err != io.EOF { b, _ := ioutil.ReadAll(r.unread()) s := fmt.Sprintf("%v%s", t, string(b)) return fmt.Errorf("superfluous data found after JSON object: %q", s) } return nil } func unmarshalWellKnownType(m *Message, r *jsReader, opts *jsonpb.Unmarshaler) (bool, error) { fqn := m.md.GetFullyQualifiedName() if _, ok := wellKnownTypeNames[fqn]; !ok { return false, nil } msgType := proto.MessageType(fqn) if msgType == nil { // wtf? panic(fmt.Sprintf("could not find registered message type for %q", fqn)) } // extract json value from r var js json.RawMessage if err := json.NewDecoder(r.unread()).Decode(&js); err != nil { return true, err } if err := r.skip(); err != nil { return true, err } // unmarshal into well-known type and then convert to dynamic message msg := reflect.New(msgType.Elem()).Interface().(proto.Message) if err := opts.Unmarshal(bytes.NewReader(js), msg); err != nil { return true, err } return true, m.MergeFrom(msg) } func (m *Message) unmarshalJson(r *jsReader, opts *jsonpb.Unmarshaler) error { if r, changed := wrapResolver(opts.AnyResolver, m.mf, m.md.GetFile()); changed { newOpts := *opts newOpts.AnyResolver = r opts = &newOpts } if ok, err := unmarshalWellKnownType(m, r, opts); ok { return err } t, err := r.peek() if err != nil { return err } if t == nil { // if json is simply "null" we do nothing r.poll() return nil } if err := r.beginObject(); err != nil { return err } for r.hasNext() { f, err := r.nextObjectKey() if err != nil { return err } fd := m.FindFieldDescriptorByJSONName(f) if fd == nil { if opts.AllowUnknownFields { r.skip() continue } return fmt.Errorf("message type %s has no known field named %s", m.md.GetFullyQualifiedName(), f) } v, err := unmarshalJsField(fd, r, m.mf, opts) if err != nil { return err } if v != nil { if err := mergeField(m, fd, v); err != nil { return err } } else if fd.GetOneOf() != nil { // preserve explicit null for oneof fields (this is a little odd but // mimics the behavior of jsonpb with oneofs in generated message types) if fd.GetMessageType() != nil { typ := m.mf.GetKnownTypeRegistry().GetKnownType(fd.GetMessageType().GetFullyQualifiedName()) if typ != nil { // typed nil if typ.Kind() != reflect.Ptr { typ = reflect.PtrTo(typ) } v = reflect.Zero(typ).Interface() } else { // can't use nil dynamic message, so we just use empty one instead v = m.mf.NewDynamicMessage(fd.GetMessageType()) } if err := m.setField(fd, v); err != nil { return err } } else { // not a message... explicit null makes no sense return fmt.Errorf("message type %s cannot set field %s to null: it is not a message type", m.md.GetFullyQualifiedName(), f) } } else { m.clearField(fd) } } if err := r.endObject(); err != nil { return err } return nil } func isWellKnownValue(fd *desc.FieldDescriptor) bool { return !fd.IsRepeated() && fd.GetType() == descriptor.FieldDescriptorProto_TYPE_MESSAGE && fd.GetMessageType().GetFullyQualifiedName() == "google.protobuf.Value" } func isWellKnownListValue(fd *desc.FieldDescriptor) bool { return !fd.IsRepeated() && fd.GetType() == descriptor.FieldDescriptorProto_TYPE_MESSAGE && fd.GetMessageType().GetFullyQualifiedName() == "google.protobuf.ListValue" } func unmarshalJsField(fd *desc.FieldDescriptor, r *jsReader, mf *MessageFactory, opts *jsonpb.Unmarshaler) (interface{}, error) { t, err := r.peek() if err != nil { return nil, err } if t == nil && !isWellKnownValue(fd) { // if value is null, just return nil // (unless field is google.protobuf.Value, in which case // we fall through to parse it as an instance where its // underlying value is set to a NullValue) r.poll() return nil, nil } if t == json.Delim('{') && fd.IsMap() { entryType := fd.GetMessageType() keyType := entryType.FindFieldByNumber(1) valueType := entryType.FindFieldByNumber(2) mp := map[interface{}]interface{}{} // TODO: if there are just two map keys "key" and "value" and they have the right type of values, // treat this JSON object as a single map entry message. (In keeping with support of map fields as // if they were normal repeated field of entry messages as well as supporting a transition from // optional to repeated...) if err := r.beginObject(); err != nil { return nil, err } for r.hasNext() { kk, err := unmarshalJsFieldElement(keyType, r, mf, opts, false) if err != nil { return nil, err } vv, err := unmarshalJsFieldElement(valueType, r, mf, opts, true) if err != nil { return nil, err } mp[kk] = vv } if err := r.endObject(); err != nil { return nil, err } return mp, nil } else if t == json.Delim('[') && !isWellKnownListValue(fd) { // We support parsing an array, even if field is not repeated, to mimic support in proto // binary wire format that supports changing an optional field to repeated and vice versa. // If the field is not repeated, we only keep the last value in the array. if err := r.beginArray(); err != nil { return nil, err } var sl []interface{} var v interface{} for r.hasNext() { var err error v, err = unmarshalJsFieldElement(fd, r, mf, opts, false) if err != nil { return nil, err } if fd.IsRepeated() && v != nil { sl = append(sl, v) } } if err := r.endArray(); err != nil { return nil, err } if fd.IsMap() { mp := map[interface{}]interface{}{} for _, m := range sl { msg := m.(*Message) kk, err := msg.TryGetFieldByNumber(1) if err != nil { return nil, err } vv, err := msg.TryGetFieldByNumber(2) if err != nil { return nil, err } mp[kk] = vv } return mp, nil } else if fd.IsRepeated() { return sl, nil } else { return v, nil } } else { // We support parsing a singular value, even if field is repeated, to mimic support in proto // binary wire format that supports changing an optional field to repeated and vice versa. // If the field is repeated, we store value as singleton slice of that one value. v, err := unmarshalJsFieldElement(fd, r, mf, opts, false) if err != nil { return nil, err } if v == nil { return nil, nil } if fd.IsRepeated() { return []interface{}{v}, nil } else { return v, nil } } } func unmarshalJsFieldElement(fd *desc.FieldDescriptor, r *jsReader, mf *MessageFactory, opts *jsonpb.Unmarshaler, allowNilMessage bool) (interface{}, error) { t, err := r.peek() if err != nil { return nil, err } switch fd.GetType() { case descriptor.FieldDescriptorProto_TYPE_MESSAGE, descriptor.FieldDescriptorProto_TYPE_GROUP: if t == nil && allowNilMessage { // if json is simply "null" return a nil pointer r.poll() return nilMessage(fd.GetMessageType()), nil } m := mf.NewMessage(fd.GetMessageType()) if dm, ok := m.(*Message); ok { if err := dm.unmarshalJson(r, opts); err != nil { return nil, err } } else { var msg json.RawMessage if err := json.NewDecoder(r.unread()).Decode(&msg); err != nil { return nil, err } if err := r.skip(); err != nil { return nil, err } if err := opts.Unmarshal(bytes.NewReader([]byte(msg)), m); err != nil { return nil, err } } return m, nil case descriptor.FieldDescriptorProto_TYPE_ENUM: if e, err := r.nextNumber(); err != nil { return nil, err } else { // value could be string or number if i, err := e.Int64(); err != nil { // number cannot be parsed, so see if it's an enum value name vd := fd.GetEnumType().FindValueByName(string(e)) if vd != nil { return vd.GetNumber(), nil } else { return nil, fmt.Errorf("enum %q does not have value named %q", fd.GetEnumType().GetFullyQualifiedName(), e) } } else if i > math.MaxInt32 || i < math.MinInt32 { return nil, NumericOverflowError } else { return int32(i), err } } case descriptor.FieldDescriptorProto_TYPE_INT32, descriptor.FieldDescriptorProto_TYPE_SINT32, descriptor.FieldDescriptorProto_TYPE_SFIXED32: if i, err := r.nextInt(); err != nil { return nil, err } else if i > math.MaxInt32 || i < math.MinInt32 { return nil, NumericOverflowError } else { return int32(i), err } case descriptor.FieldDescriptorProto_TYPE_INT64, descriptor.FieldDescriptorProto_TYPE_SINT64, descriptor.FieldDescriptorProto_TYPE_SFIXED64: return r.nextInt() case descriptor.FieldDescriptorProto_TYPE_UINT32, descriptor.FieldDescriptorProto_TYPE_FIXED32: if i, err := r.nextUint(); err != nil { return nil, err } else if i > math.MaxUint32 { return nil, NumericOverflowError } else { return uint32(i), err } case descriptor.FieldDescriptorProto_TYPE_UINT64, descriptor.FieldDescriptorProto_TYPE_FIXED64: return r.nextUint() case descriptor.FieldDescriptorProto_TYPE_BOOL: if str, ok := t.(string); ok { if str == "true" { r.poll() // consume token return true, err } else if str == "false" { r.poll() // consume token return false, err } } return r.nextBool() case descriptor.FieldDescriptorProto_TYPE_FLOAT: if f, err := r.nextFloat(); err != nil { return nil, err } else { return float32(f), nil } case descriptor.FieldDescriptorProto_TYPE_DOUBLE: return r.nextFloat() case descriptor.FieldDescriptorProto_TYPE_BYTES: return r.nextBytes() case descriptor.FieldDescriptorProto_TYPE_STRING: return r.nextString() default: return nil, fmt.Errorf("unknown field type: %v", fd.GetType()) } } type jsReader struct { reader *bytes.Reader dec *json.Decoder current json.Token peeked bool } func newJsReader(b []byte) *jsReader { reader := bytes.NewReader(b) dec := json.NewDecoder(reader) dec.UseNumber() return &jsReader{reader: reader, dec: dec} } func (r *jsReader) unread() io.Reader { bufs := make([]io.Reader, 3) var peeked []byte if r.peeked { if _, ok := r.current.(json.Delim); ok { peeked = []byte(fmt.Sprintf("%v", r.current)) } else { peeked, _ = json.Marshal(r.current) } } readerCopy := *r.reader decCopy := *r.dec bufs[0] = bytes.NewReader(peeked) bufs[1] = decCopy.Buffered() bufs[2] = &readerCopy return &concatReader{bufs: bufs} } func (r *jsReader) hasNext() bool { return r.dec.More() } func (r *jsReader) peek() (json.Token, error) { if r.peeked { return r.current, nil } t, err := r.dec.Token() if err != nil { return nil, err } r.peeked = true r.current = t return t, nil } func (r *jsReader) poll() (json.Token, error) { if r.peeked { ret := r.current r.current = nil r.peeked = false return ret, nil } return r.dec.Token() } func (r *jsReader) beginObject() error { _, err := r.expect(func(t json.Token) bool { return t == json.Delim('{') }, nil, "start of JSON object: '{'") return err } func (r *jsReader) endObject() error { _, err := r.expect(func(t json.Token) bool { return t == json.Delim('}') }, nil, "end of JSON object: '}'") return err } func (r *jsReader) beginArray() error { _, err := r.expect(func(t json.Token) bool { return t == json.Delim('[') }, nil, "start of array: '['") return err } func (r *jsReader) endArray() error { _, err := r.expect(func(t json.Token) bool { return t == json.Delim(']') }, nil, "end of array: ']'") return err } func (r *jsReader) nextObjectKey() (string, error) { return r.nextString() } func (r *jsReader) nextString() (string, error) { t, err := r.expect(func(t json.Token) bool { _, ok := t.(string); return ok }, "", "string") if err != nil { return "", err } return t.(string), nil } func (r *jsReader) nextBytes() ([]byte, error) { str, err := r.nextString() if err != nil { return nil, err } return base64.StdEncoding.DecodeString(str) } func (r *jsReader) nextBool() (bool, error) { t, err := r.expect(func(t json.Token) bool { _, ok := t.(bool); return ok }, false, "boolean") if err != nil { return false, err } return t.(bool), nil } func (r *jsReader) nextInt() (int64, error) { n, err := r.nextNumber() if err != nil { return 0, err } return n.Int64() } func (r *jsReader) nextUint() (uint64, error) { n, err := r.nextNumber() if err != nil { return 0, err } return strconv.ParseUint(string(n), 10, 64) } func (r *jsReader) nextFloat() (float64, error) { n, err := r.nextNumber() if err != nil { return 0, err } return n.Float64() } func (r *jsReader) nextNumber() (json.Number, error) { t, err := r.expect(func(t json.Token) bool { return reflect.TypeOf(t).Kind() == reflect.String }, "0", "number") if err != nil { return "", err } switch t := t.(type) { case json.Number: return t, nil case string: return json.Number(t), nil } return "", fmt.Errorf("expecting a number but got %v", t) } func (r *jsReader) skip() error { t, err := r.poll() if err != nil { return err } if t == json.Delim('[') { if err := r.skipArray(); err != nil { return err } } else if t == json.Delim('{') { if err := r.skipObject(); err != nil { return err } } return nil } func (r *jsReader) skipArray() error { for r.hasNext() { if err := r.skip(); err != nil { return err } } if err := r.endArray(); err != nil { return err } return nil } func (r *jsReader) skipObject() error { for r.hasNext() { // skip object key if err := r.skip(); err != nil { return err } // and value if err := r.skip(); err != nil { return err } } if err := r.endObject(); err != nil { return err } return nil } func (r *jsReader) expect(predicate func(json.Token) bool, ifNil interface{}, expected string) (interface{}, error) { t, err := r.poll() if err != nil { return nil, err } if t == nil && ifNil != nil { return ifNil, nil } if !predicate(t) { return t, fmt.Errorf("bad input: expecting %s ; instead got %v", expected, t) } return t, nil } type concatReader struct { bufs []io.Reader curr int } func (r *concatReader) Read(p []byte) (n int, err error) { for { if r.curr >= len(r.bufs) { err = io.EOF return } var c int c, err = r.bufs[r.curr].Read(p) n += c if err != io.EOF { return } r.curr++ p = p[c:] } } // AnyResolver returns a jsonpb.AnyResolver that uses the given file descriptors // to resolve message names. It uses the given factory, which may be nil, to // instantiate messages. The messages that it returns when resolving a type name // may often be dynamic messages. func AnyResolver(mf *MessageFactory, files ...*desc.FileDescriptor) jsonpb.AnyResolver { return &anyResolver{mf: mf, files: files} } type anyResolver struct { mf *MessageFactory files []*desc.FileDescriptor ignored map[*desc.FileDescriptor]struct{} other jsonpb.AnyResolver } func wrapResolver(r jsonpb.AnyResolver, mf *MessageFactory, f *desc.FileDescriptor) (jsonpb.AnyResolver, bool) { if r, ok := r.(*anyResolver); ok { if _, ok := r.ignored[f]; ok { // if the current resolver is ignoring this file, it's because another // (upstream) resolver is already handling it, so nothing to do return r, false } for _, file := range r.files { if file == f { // no need to wrap! return r, false } } // ignore files that will be checked by the resolver we're wrapping // (we'll just delegate and let it search those files) ignored := map[*desc.FileDescriptor]struct{}{} for i := range r.ignored { ignored[i] = struct{}{} } ignore(r.files, ignored) return &anyResolver{mf: mf, files: []*desc.FileDescriptor{f}, ignored: ignored, other: r}, true } return &anyResolver{mf: mf, files: []*desc.FileDescriptor{f}, other: r}, true } func ignore(files []*desc.FileDescriptor, ignored map[*desc.FileDescriptor]struct{}) { for _, f := range files { if _, ok := ignored[f]; ok { continue } ignored[f] = struct{}{} ignore(f.GetDependencies(), ignored) } } func (r *anyResolver) Resolve(typeUrl string) (proto.Message, error) { mname := typeUrl if slash := strings.LastIndex(mname, "/"); slash >= 0 { mname = mname[slash+1:] } // see if the user-specified resolver is able to do the job if r.other != nil { msg, err := r.other.Resolve(typeUrl) if err == nil { return msg, nil } } // try to find the message in our known set of files checked := map[*desc.FileDescriptor]struct{}{} for _, f := range r.files { md := r.findMessage(f, mname, checked) if md != nil { return r.mf.NewMessage(md), nil } } // failing that, see if the message factory knows about this type var ktr *KnownTypeRegistry if r.mf != nil { ktr = r.mf.ktr } else { ktr = (*KnownTypeRegistry)(nil) } m := ktr.CreateIfKnown(mname) if m != nil { return m, nil } // no other resolver to fallback to? mimic default behavior mt := proto.MessageType(mname) if mt == nil { return nil, fmt.Errorf("unknown message type %q", mname) } return reflect.New(mt.Elem()).Interface().(proto.Message), nil } func (r *anyResolver) findMessage(fd *desc.FileDescriptor, msgName string, checked map[*desc.FileDescriptor]struct{}) *desc.MessageDescriptor { // if this is an ignored descriptor, skip if _, ok := r.ignored[fd]; ok { return nil } // bail if we've already checked this file if _, ok := checked[fd]; ok { return nil } checked[fd] = struct{}{} // see if this file has the message md := fd.FindMessage(msgName) if md != nil { return md } // if not, recursively search the file's imports for _, dep := range fd.GetDependencies() { md = r.findMessage(dep, msgName, checked) if md != nil { return md } } return nil } var _ jsonpb.AnyResolver = (*anyResolver)(nil)