iperf3exporter/vendor/honnef.co/go/tools/internal/sharedcheck/lint.go
Marvin Preuss 2343c9588a
Some checks failed
continuous-integration/drone/push Build is passing
continuous-integration/drone/tag Build is failing
first commit
2021-10-20 10:08:56 +02:00

207 lines
6.6 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package sharedcheck
import (
"fmt"
"go/ast"
"go/token"
"go/types"
"honnef.co/go/tools/analysis/code"
"honnef.co/go/tools/analysis/edit"
"honnef.co/go/tools/analysis/facts"
"honnef.co/go/tools/analysis/report"
"honnef.co/go/tools/go/ast/astutil"
"honnef.co/go/tools/go/ir"
"honnef.co/go/tools/go/ir/irutil"
"honnef.co/go/tools/internal/passes/buildir"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
)
func CheckRangeStringRunes(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
cb := func(node ast.Node) bool {
rng, ok := node.(*ast.RangeStmt)
if !ok || !astutil.IsBlank(rng.Key) {
return true
}
v, _ := fn.ValueForExpr(rng.X)
// Check that we're converting from string to []rune
val, _ := v.(*ir.Convert)
if val == nil {
return true
}
Tsrc, ok := val.X.Type().Underlying().(*types.Basic)
if !ok || Tsrc.Kind() != types.String {
return true
}
Tdst, ok := val.Type().(*types.Slice)
if !ok {
return true
}
TdstElem, ok := Tdst.Elem().(*types.Basic)
if !ok || TdstElem.Kind() != types.Int32 {
return true
}
// Check that the result of the conversion is only used to
// range over
refs := val.Referrers()
if refs == nil {
return true
}
// Expect two refs: one for obtaining the length of the slice,
// one for accessing the elements
if len(irutil.FilterDebug(*refs)) != 2 {
// TODO(dh): right now, we check that only one place
// refers to our slice. This will miss cases such as
// ranging over the slice twice. Ideally, we'd ensure that
// the slice is only used for ranging over (without
// accessing the key), but that is harder to do because in
// IR form, ranging over a slice looks like an ordinary
// loop with index increments and slice accesses. We'd
// have to look at the associated AST node to check that
// it's a range statement.
return true
}
pass.Reportf(rng.Pos(), "should range over string, not []rune(string)")
return true
}
if source := fn.Source(); source != nil {
ast.Inspect(source, cb)
}
}
return nil, nil
}
// RedundantTypeInDeclarationChecker returns a checker that flags variable declarations with redundantly specified types.
// That is, it flags 'var v T = e' where e's type is identical to T and 'var v = e' (or 'v := e') would have the same effect.
//
// It does not flag variables under the following conditions, to reduce the number of false positives:
// - global variables these often specify types to aid godoc
// - files that use cgo cgo code generation and pointer checking emits redundant types
//
// It does not flag variables under the following conditions, unless flagHelpfulTypes is true, to reduce the number of noisy positives:
// - packages that import syscall or unsafe these sometimes use this form of assignment to make sure types are as expected
// - variables named the blank identifier a pattern used to confirm the types of variables
// - named untyped constants on the rhs the explicitness might aid readability
func RedundantTypeInDeclarationChecker(verb string, flagHelpfulTypes bool) *analysis.Analyzer {
fn := func(pass *analysis.Pass) (interface{}, error) {
eval := func(expr ast.Expr) (types.TypeAndValue, error) {
info := &types.Info{
Types: map[ast.Expr]types.TypeAndValue{},
}
err := types.CheckExpr(pass.Fset, pass.Pkg, expr.Pos(), expr, info)
return info.Types[expr], err
}
if !flagHelpfulTypes {
// Don't look at code in low-level packages
for _, imp := range pass.Pkg.Imports() {
if imp.Path() == "syscall" || imp.Path() == "unsafe" {
return nil, nil
}
}
}
fn := func(node ast.Node) {
decl := node.(*ast.GenDecl)
if decl.Tok != token.VAR {
return
}
gen, _ := code.Generator(pass, decl.Pos())
if gen == facts.Cgo {
// TODO(dh): remove this exception once we can use UsesCgo
return
}
// Delay looking up parent AST nodes until we have to
checkedDecl := false
specLoop:
for _, spec := range decl.Specs {
spec := spec.(*ast.ValueSpec)
if spec.Type == nil {
continue
}
if len(spec.Names) != len(spec.Values) {
continue
}
Tlhs := pass.TypesInfo.TypeOf(spec.Type)
for i, v := range spec.Values {
if !flagHelpfulTypes && spec.Names[i].Name == "_" {
continue specLoop
}
Trhs := pass.TypesInfo.TypeOf(v)
if !types.Identical(Tlhs, Trhs) {
continue specLoop
}
// Some expressions are untyped and get converted to the lhs type implicitly.
// This applies to untyped constants, shift operations with an untyped lhs, and possibly others.
//
// Check if the type is truly redundant, i.e. if the type on the lhs doesn't match the default type of the untyped constant.
tv, err := eval(v)
if err != nil {
panic(err)
}
if b, ok := tv.Type.(*types.Basic); ok && (b.Info()&types.IsUntyped) != 0 {
switch v := v.(type) {
case *ast.Ident:
// Only flag named constant rhs if it's a predeclared identifier.
// Don't flag other named constants, as the explicit type may aid readability.
if pass.TypesInfo.ObjectOf(v).Pkg() != nil && !flagHelpfulTypes {
continue specLoop
}
case *ast.SelectorExpr:
// Constant selector expressions can only refer to named constants that arent predeclared.
if !flagHelpfulTypes {
continue specLoop
}
default:
// don't skip if the type on the lhs matches the default type of the constant
if Tlhs != types.Default(b) {
continue specLoop
}
}
}
}
if !checkedDecl {
// Don't flag global variables. These often have explicit types for godoc's sake.
path, _ := astutil.PathEnclosingInterval(code.File(pass, decl), decl.Pos(), decl.Pos())
pathLoop:
for _, el := range path {
switch el.(type) {
case *ast.FuncDecl, *ast.FuncLit:
checkedDecl = true
break pathLoop
}
}
if !checkedDecl {
// decl is not inside a function
break specLoop
}
}
report.Report(pass, spec.Type, fmt.Sprintf("%s omit type %s from declaration; it will be inferred from the right-hand side", verb, report.Render(pass, spec.Type)), report.FilterGenerated(),
report.Fixes(edit.Fix("Remove redundant type", edit.Delete(spec.Type))))
}
}
code.Preorder(pass, fn, (*ast.GenDecl)(nil))
return nil, nil
}
return &analysis.Analyzer{
Run: fn,
Requires: []*analysis.Analyzer{facts.Generated, inspect.Analyzer, facts.TokenFile, facts.Generated},
}
}