// Copyright 2014 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package info import ( "reflect" "time" ) type CpuSpec struct { Limit uint64 `json:"limit"` MaxLimit uint64 `json:"max_limit"` Mask string `json:"mask,omitempty"` } type MemorySpec struct { // The amount of memory requested. Default is unlimited (-1). // Units: bytes. Limit uint64 `json:"limit,omitempty"` // The amount of guaranteed memory. Default is 0. // Units: bytes. Reservation uint64 `json:"reservation,omitempty"` // The amount of swap space requested. Default is unlimited (-1). // Units: bytes. SwapLimit uint64 `json:"swap_limit,omitempty"` } type ContainerSpec struct { // Time at which the container was created. CreationTime time.Time `json:"creation_time,omitempty"` HasCpu bool `json:"has_cpu"` Cpu CpuSpec `json:"cpu,omitempty"` HasMemory bool `json:"has_memory"` Memory MemorySpec `json:"memory,omitempty"` HasNetwork bool `json:"has_network"` HasFilesystem bool `json:"has_filesystem"` // HasDiskIo when true, indicates that DiskIo stats will be available. HasDiskIo bool `json:"has_diskio"` } // Container reference contains enough information to uniquely identify a container type ContainerReference struct { // The absolute name of the container. This is unique on the machine. Name string `json:"name"` // Other names by which the container is known within a certain namespace. // This is unique within that namespace. Aliases []string `json:"aliases,omitempty"` // Namespace under which the aliases of a container are unique. // An example of a namespace is "docker" for Docker containers. Namespace string `json:"namespace,omitempty"` } // ContainerInfoQuery is used when users check a container info from the REST api. // It specifies how much data users want to get about a container type ContainerInfoRequest struct { // Max number of stats to return. NumStats int `json:"num_stats,omitempty"` } type ContainerInfo struct { ContainerReference // The direct subcontainers of the current container. Subcontainers []ContainerReference `json:"subcontainers,omitempty"` // The isolation used in the container. Spec ContainerSpec `json:"spec,omitempty"` // Historical statistics gathered from the container. Stats []*ContainerStats `json:"stats,omitempty"` } // TODO(vmarmol): Refactor to not need this equality comparison. // ContainerInfo may be (un)marshaled by json or other en/decoder. In that // case, the Timestamp field in each stats/sample may not be precisely // en/decoded. This will lead to small but acceptable differences between a // ContainerInfo and its encode-then-decode version. Eq() is used to compare // two ContainerInfo accepting small difference (<10ms) of Time fields. func (self *ContainerInfo) Eq(b *ContainerInfo) bool { // If both self and b are nil, then Eq() returns true if self == nil { return b == nil } if b == nil { return self == nil } // For fields other than time.Time, we will compare them precisely. // This would require that any slice should have same order. if !reflect.DeepEqual(self.ContainerReference, b.ContainerReference) { return false } if !reflect.DeepEqual(self.Subcontainers, b.Subcontainers) { return false } if !self.Spec.Eq(&b.Spec) { return false } for i, expectedStats := range b.Stats { selfStats := self.Stats[i] if !expectedStats.Eq(selfStats) { return false } } return true } func (self *ContainerSpec) Eq(b *ContainerSpec) bool { // Creation within 1s of each other. diff := self.CreationTime.Sub(b.CreationTime) if (diff > time.Second) || (diff < -time.Second) { return false } if self.HasCpu != b.HasCpu { return false } if !reflect.DeepEqual(self.Cpu, b.Cpu) { return false } if self.HasMemory != b.HasMemory { return false } if !reflect.DeepEqual(self.Memory, b.Memory) { return false } if self.HasNetwork != b.HasNetwork { return false } if self.HasFilesystem != b.HasFilesystem { return false } if self.HasDiskIo != b.HasDiskIo { return false } return true } func (self *ContainerInfo) StatsAfter(ref time.Time) []*ContainerStats { n := len(self.Stats) + 1 for i, s := range self.Stats { if s.Timestamp.After(ref) { n = i break } } if n > len(self.Stats) { return nil } return self.Stats[n:] } func (self *ContainerInfo) StatsStartTime() time.Time { var ret time.Time for _, s := range self.Stats { if s.Timestamp.Before(ret) || ret.IsZero() { ret = s.Timestamp } } return ret } func (self *ContainerInfo) StatsEndTime() time.Time { var ret time.Time for i := len(self.Stats) - 1; i >= 0; i-- { s := self.Stats[i] if s.Timestamp.After(ret) { ret = s.Timestamp } } return ret } // This mirrors kernel internal structure. type LoadStats struct { // Number of sleeping tasks. NrSleeping uint64 `json:"nr_sleeping"` // Number of running tasks. NrRunning uint64 `json:"nr_running"` // Number of tasks in stopped state NrStopped uint64 `json:"nr_stopped"` // Number of tasks in uninterruptible state NrUinterruptible uint64 `json:"nr_uninterruptible"` // Number of tasks waiting on IO NrIoWait uint64 `json:"nr_io_wait"` } // All CPU usage metrics are cumulative from the creation of the container type CpuStats struct { Usage struct { // Total CPU usage. // Units: nanoseconds Total uint64 `json:"total"` // Per CPU/core usage of the container. // Unit: nanoseconds. PerCpu []uint64 `json:"per_cpu_usage,omitempty"` // Time spent in user space. // Unit: nanoseconds User uint64 `json:"user"` // Time spent in kernel space. // Unit: nanoseconds System uint64 `json:"system"` } `json:"usage"` // Smoothed average of number of runnable threads x 1000. // We multiply by thousand to avoid using floats, but preserving precision. // Load is smoothed over the last 10 seconds. Instantaneous value can be read // from LoadStats.NrRunning. LoadAverage int32 `json:"load_average"` } type PerDiskStats struct { Major uint64 `json:"major"` Minor uint64 `json:"minor"` Stats map[string]uint64 `json:"stats"` } type DiskIoStats struct { IoServiceBytes []PerDiskStats `json:"io_service_bytes,omitempty"` IoServiced []PerDiskStats `json:"io_serviced,omitempty"` IoQueued []PerDiskStats `json:"io_queued,omitempty"` Sectors []PerDiskStats `json:"sectors,omitempty"` IoServiceTime []PerDiskStats `json:"io_service_time,omitempty"` IoWaitTime []PerDiskStats `json:"io_wait_time,omitempty"` IoMerged []PerDiskStats `json:"io_merged,omitempty"` IoTime []PerDiskStats `json:"io_time,omitempty"` } type MemoryStats struct { // Current memory usage, this includes all memory regardless of when it was // accessed. // Units: Bytes. Usage uint64 `json:"usage"` // The amount of working set memory, this includes recently accessed memory, // dirty memory, and kernel memory. Working set is <= "usage". // Units: Bytes. WorkingSet uint64 `json:"working_set"` ContainerData MemoryStatsMemoryData `json:"container_data,omitempty"` HierarchicalData MemoryStatsMemoryData `json:"hierarchical_data,omitempty"` } type MemoryStatsMemoryData struct { Pgfault uint64 `json:"pgfault"` Pgmajfault uint64 `json:"pgmajfault"` } type NetworkStats struct { // Cumulative count of bytes received. RxBytes uint64 `json:"rx_bytes"` // Cumulative count of packets received. RxPackets uint64 `json:"rx_packets"` // Cumulative count of receive errors encountered. RxErrors uint64 `json:"rx_errors"` // Cumulative count of packets dropped while receiving. RxDropped uint64 `json:"rx_dropped"` // Cumulative count of bytes transmitted. TxBytes uint64 `json:"tx_bytes"` // Cumulative count of packets transmitted. TxPackets uint64 `json:"tx_packets"` // Cumulative count of transmit errors encountered. TxErrors uint64 `json:"tx_errors"` // Cumulative count of packets dropped while transmitting. TxDropped uint64 `json:"tx_dropped"` } type FsStats struct { // The block device name associated with the filesystem. Device string `json:"device,omitempty"` // Number of bytes that can be consumed by the container on this filesystem. Limit uint64 `json:"capacity"` // Number of bytes that is consumed by the container on this filesystem. Usage uint64 `json:"usage"` // Number of reads completed // This is the total number of reads completed successfully. ReadsCompleted uint64 `json:"reads_completed"` // Number of reads merged // Reads and writes which are adjacent to each other may be merged for // efficiency. Thus two 4K reads may become one 8K read before it is // ultimately handed to the disk, and so it will be counted (and queued) // as only one I/O. This field lets you know how often this was done. ReadsMerged uint64 `json:"reads_merged"` // Number of sectors read // This is the total number of sectors read successfully. SectorsRead uint64 `json:"sectors_read"` // Number of milliseconds spent reading // This is the total number of milliseconds spent by all reads (as // measured from __make_request() to end_that_request_last()). ReadTime uint64 `json:"read_time"` // Number of writes completed // This is the total number of writes completed successfully. WritesCompleted uint64 `json:"writes_completed"` // Number of writes merged // See the description of reads merged. WritesMerged uint64 `json:"writes_merged"` // Number of sectors written // This is the total number of sectors written successfully. SectorsWritten uint64 `json:"sectors_written"` // Number of milliseconds spent writing // This is the total number of milliseconds spent by all writes (as // measured from __make_request() to end_that_request_last()). WriteTime uint64 `json:"write_time"` // Number of I/Os currently in progress // The only field that should go to zero. Incremented as requests are // given to appropriate struct request_queue and decremented as they finish. IoInProgress uint64 `json:"io_in_progress"` // Number of milliseconds spent doing I/Os // This field increases so long as field 9 is nonzero. IoTime uint64 `json:"io_time"` // weighted number of milliseconds spent doing I/Os // This field is incremented at each I/O start, I/O completion, I/O // merge, or read of these stats by the number of I/Os in progress // (field 9) times the number of milliseconds spent doing I/O since the // last update of this field. This can provide an easy measure of both // I/O completion time and the backlog that may be accumulating. WeightedIoTime uint64 `json:"weighted_io_time"` } type ContainerStats struct { // The time of this stat point. Timestamp time.Time `json:"timestamp"` Cpu CpuStats `json:"cpu,omitempty"` DiskIo DiskIoStats `json:"diskio,omitempty"` Memory MemoryStats `json:"memory,omitempty"` Network NetworkStats `json:"network,omitempty"` // Filesystem statistics Filesystem []FsStats `json:"filesystem,omitempty"` // Task load stats TaskStats LoadStats `json:"task_stats,omitempty"` } func timeEq(t1, t2 time.Time, tolerance time.Duration) bool { // t1 should not be later than t2 if t1.After(t2) { t1, t2 = t2, t1 } diff := t2.Sub(t1) if diff <= tolerance { return true } return false } func durationEq(a, b time.Duration, tolerance time.Duration) bool { if a > b { a, b = b, a } diff := a - b if diff <= tolerance { return true } return false } const ( // 10ms, i.e. 0.01s timePrecision time.Duration = 10 * time.Millisecond ) // This function is useful because we do not require precise time // representation. func (a *ContainerStats) Eq(b *ContainerStats) bool { if !timeEq(a.Timestamp, b.Timestamp, timePrecision) { return false } return a.StatsEq(b) } // Checks equality of the stats values. func (a *ContainerStats) StatsEq(b *ContainerStats) bool { // TODO(vmarmol): Consider using this through reflection. if !reflect.DeepEqual(a.Cpu, b.Cpu) { return false } if !reflect.DeepEqual(a.Memory, b.Memory) { return false } if !reflect.DeepEqual(a.DiskIo, b.DiskIo) { return false } if !reflect.DeepEqual(a.Network, b.Network) { return false } if !reflect.DeepEqual(a.Filesystem, b.Filesystem) { return false } return true } // Saturate CPU usage to 0. func calculateCpuUsage(prev, cur uint64) uint64 { if prev > cur { return 0 } return cur - prev } type Percentiles struct { // Indicates whether the stats are present or not. // If true, values below do not have any data. Present bool `json:"present"` // Average over the collected sample. Mean uint64 `json:"mean"` // Max seen over the collected sample. Max uint64 `json:"max"` // 90th percentile over the collected sample. Ninety uint64 `json:"ninety"` } type Usage struct { // Indicates amount of data available [0-100]. // If we have data for half a day, we'll still process DayUsage, // but set PercentComplete to 50. PercentComplete int32 `json:"percent_complete"` // Mean, Max, and 90p cpu rate value in milliCpus/seconds. Converted to milliCpus to avoid floats. Cpu Percentiles `json:"cpu"` // Mean, Max, and 90p memory size in bytes. Memory Percentiles `json:"memory"` } type DerivedStats struct { // Time of generation of these stats. Timestamp time.Time `json:"timestamp"` // Percentiles in last observed minute. MinuteUsage Usage `json:"minute_usage"` // Percentile in last hour. HourUsage Usage `json:"hour_usage"` // Percentile in last day. DayUsage Usage `json:"day_usage"` }